摘要
The kinematics of hydrogen diffusion in nontransparent metallic materials is crucial to the hydrogen-sensing and -storage technology and remains a challenge. Alongside the conventional optical investigations, the hydrogen absorption-induced reversible changes of magnetic properties in ferromagnetic thin films provides a new method for visualization of hydrogen in solids. Here we monitor real-time hydrogen diffusion in a cobalt-palladium alloy (Co25Pd75) film using a magneto-optical Kerr microscope. The spatially resolved magneto-optical contrasted images provide a noninvasive method of monitoring hydrogen movement. Hydrogen diffusion follows Fick’s diffusion law, and a diffusion coefficient of 3 ± 2 × 10−12 m2/s is obtained. The diffusion velocity of the 2–4% hydrogen concentration fronts reaches 30 ± 15 nm/s in the uniform film area and increases to 50 ± 20 nm/s near a defect site. These results can be applied in detecting hydrogen diffusion in other spintronic materials, such as magnetic palladium-alloy thin films.
原文 | 英語 |
---|---|
文章編號 | 89 |
期刊 | Communications Chemistry |
卷 | 2 |
發行號 | 1 |
DOIs | |
出版狀態 | 已發佈 - 2019 12月 1 |
ASJC Scopus subject areas
- 一般化學
- 材料化學
- 環境化學
- 生物化學