Users' behavioral prediction for phishing detection

Lung Hao Lee, Kuei Ching Lee, Yen Cheng Juan, Hsin Hsi Chen, Yuen Hsien Tseng

研究成果: 書貢獻/報告類型會議論文篇章

10 引文 斯高帕斯(Scopus)

摘要

This study explores the users' web browsing behaviors that confront phishing situations for context-aware phishing detection. We extract discriminative features of each clicked URL, i.e., domain name, bag-of-words, generic Top-Level Domains, IP address, and port number, to develop a linear chain CRF model for users' behavioral prediction. Large-scale experiments show that our method achieves promising performance for predicting the phishing threats of users' next accesses. Error analysis indicates that our model results in a favorably low false positive rate. In practice, our solution is complementary to the existing anti-phishing techniques for cost-effectively blocking phishing threats from users' behavioral perspectives.

原文英語
主出版物標題WWW 2014 Companion - Proceedings of the 23rd International Conference on World Wide Web
發行者Association for Computing Machinery, Inc
頁面337-338
頁數2
ISBN(電子)9781450327459
DOIs
出版狀態已發佈 - 2014 4月 7
事件23rd International Conference on World Wide Web, WWW 2014 - Seoul, 大韓民國
持續時間: 2014 4月 72014 4月 11

出版系列

名字WWW 2014 Companion - Proceedings of the 23rd International Conference on World Wide Web

其他

其他23rd International Conference on World Wide Web, WWW 2014
國家/地區大韓民國
城市Seoul
期間2014/04/072014/04/11

ASJC Scopus subject areas

  • 電腦網路與通信
  • 軟體

指紋

深入研究「Users' behavioral prediction for phishing detection」主題。共同形成了獨特的指紋。

引用此