Unitary monodromy implies the smoothness along the real axis for some Painlevé VI equation, I

Zhijie Chen*, Ting Jung Kuo, Chang Shou Lin

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

3 引文 斯高帕斯(Scopus)

摘要

In this paper, we study the Painlevé VI equation with parameter (98,−18, 18, 38). We prove (i) An explicit formula to count the number of poles of an algebraic solution with the monodromy group of the associated linear ODE being DN, where DN is the dihedral group of order 2N. (ii) There are only four solutions without poles in C∖{0,1}. (iii) If the monodromy group of the associated linear ODE of a solution λ(t) is unitary, then λ(t) has no poles in R∖{0,1}.

原文英語
頁(從 - 到)52-63
頁數12
期刊Journal of Geometry and Physics
116
DOIs
出版狀態已發佈 - 2017 6月 1
對外發佈

ASJC Scopus subject areas

  • 數學物理學
  • 一般物理與天文學
  • 幾何和拓撲

指紋

深入研究「Unitary monodromy implies the smoothness along the real axis for some Painlevé VI equation, I」主題。共同形成了獨特的指紋。

引用此