TY - JOUR
T1 - Uniqueness and structure of solutions to the Dirichlet problem for an elliptic system
AU - Chern, Jann Long
AU - Chen, Zhi You
AU - Tang, Yong Li
AU - Lin, Chang Shou
N1 - Funding Information:
E-mail addresses: [email protected] (J.-L. Chern), [email protected] (Z.-Y. Chen), [email protected] (Y.-L. Tang), [email protected] (C.-S. Lin). 1 Work partially supported by National Science Council and National Center for Theoretical Sciences of Taiwan.
PY - 2009/5/1
Y1 - 2009/5/1
N2 - In this paper, we consider the Dirichlet problem for an elliptic system on a ball in R2. By investigating the properties for the corresponding linearized equations of solutions, and adopting the Pohozaev identity and Implicit Function Theorem, we show the uniqueness and the structure of solutions.
AB - In this paper, we consider the Dirichlet problem for an elliptic system on a ball in R2. By investigating the properties for the corresponding linearized equations of solutions, and adopting the Pohozaev identity and Implicit Function Theorem, we show the uniqueness and the structure of solutions.
UR - http://www.scopus.com/inward/record.url?scp=63149130057&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=63149130057&partnerID=8YFLogxK
U2 - 10.1016/j.jde.2009.01.005
DO - 10.1016/j.jde.2009.01.005
M3 - Article
AN - SCOPUS:63149130057
SN - 0022-0396
VL - 246
SP - 3704
EP - 3714
JO - Journal of Differential Equations
JF - Journal of Differential Equations
IS - 9
ER -