摘要
Ferroelectric (FE) Hf1−xZrxO2 is a potential candidate for emerging memory in artificial intelligence (AI) and neuromorphic computation due to its non-volatility for data storage with natural bi-stable characteristics. This study experimentally characterizes and demonstrates the FE and antiferroelectric (AFE) material properties, which are modulated from doped Zr incorporated in the HfO2-system, with a diode-junction current for memory operations. Unipolar operations on one of the two hysteretic polarization branch loops of the mixed FE and AFE material give a low program voltage of 3 V with an ON/OFF ratio >100. This also benefits the switching endurance, which reaches >109 cycles. A model based on the polarization switching and tunneling mechanisms is revealed in the (A)FE diode to explain the bipolar and unipolar sweeps. In addition, the proposed FE-AFE diode with Hf1−xZrxO2 has a superior cycling endurance and lower stimulation voltage compared to perovskite FE-diodes due to its scaling capability for resistive FE memory devices.
原文 | 英語 |
---|---|
文章編號 | 2685 |
期刊 | Nanomaterials |
卷 | 11 |
發行號 | 10 |
DOIs | |
出版狀態 | 已發佈 - 2021 10月 |
ASJC Scopus subject areas
- 一般化學工程
- 一般材料科學