Traffic Agent Trajectory Prediction Using a Time Sequence Deep Learning Model with Trajectory Mapping for Autonomous Driving

Pei Yun Hsu, Mei Lin Huang, Wei Yen Wang, Hsin Han Chiang

研究成果: 書貢獻/報告類型會議論文篇章

摘要

The trajectory prediction of traffic agents plays an important role regarding to the safety of autonomous driving. Structured by gate recurrent unit (GRU), this paper proposes a new predict model with the combination of trajectory mapping method. The experimental results show that the proposed model can feasibly predict the future trajectories of the surrounding traffic agents in a mixed flow including vehicles, cyclists, and pedestrians.

原文英語
主出版物標題2021 IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW 2021
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9781665433280
DOIs
出版狀態已發佈 - 2021
事件8th IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW 2021 - Penghu, 臺灣
持續時間: 2021 9月 152021 9月 17

出版系列

名字2021 IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW 2021

會議

會議8th IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW 2021
國家/地區臺灣
城市Penghu
期間2021/09/152021/09/17

ASJC Scopus subject areas

  • 人工智慧
  • 電腦科學應用
  • 電氣與電子工程
  • 控制和優化
  • 儀器

指紋

深入研究「Traffic Agent Trajectory Prediction Using a Time Sequence Deep Learning Model with Trajectory Mapping for Autonomous Driving」主題。共同形成了獨特的指紋。

引用此