Time-asymptotic dynamics of Hermitian Riccati Differential Equations

Yueh Cheng Kuo, Huey Er Lin*, Shih Feng Shieh

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

2 引文 斯高帕斯(Scopus)

摘要

The matrix Riccati differential equation (RDE) raises in a wide variety of applications for science and applied mathematics. We are particularly interested in the Hermitian Riccati Differential Equation (HRDE). Radon’s lemma gives a solution representation to HRDE. Although solutions of HRDE may show the finite escape time phenomenon, we can investigate the time asymptotic dynamical behavior of HRDE by its extended solutions. In this paper, we adapt the Hamiltonian Jordan canonical form to characterize the time asymptotic phenomena of the extended solutions for HRDE in four elementary cases. The extended solutions of HRDE exhibit the dynamics of heteroclinic, homoclinic and periodic orbits in the elementary cases under some conditions.

原文英語
頁(從 - 到)131-158
頁數28
期刊Taiwanese Journal of Mathematics
24
發行號1
DOIs
出版狀態已發佈 - 2020 2月

ASJC Scopus subject areas

  • 數學(全部)

指紋

深入研究「Time-asymptotic dynamics of Hermitian Riccati Differential Equations」主題。共同形成了獨特的指紋。

引用此