Thickness dependence of electrical conductivity and thermo-electric power of Bi2.0Te2.7Se0.3/Bi0.4Te3.0Sb1.6 thermo-electric devices

M. H. Liao, K. C. Huang, F. A. Tsai, C. Y. Liu, C. Lien, M. H. Lee

研究成果: 雜誌貢獻期刊論文同行評審

8 引文 斯高帕斯(Scopus)

摘要

The electrical and thermo-electric (TE) properties of the bismuth telluride (BiTe)-based two-dimensional (2D) thermoelectric (TE) devices with different thin film thicknesses are analyzed systematically. The studied thin film thicknesses are covered from 100 nm to 400 nm. The accurate measured systems for the Seebeck coefficient (S) and electrical conductivity (σ) extractions are also built up in this work. When the thickness of the BiTe-based thin film in the TE device is scaled from 400 nm to 100 nm, the occurred optimized temperature (T) for the highest S value in these devices is found to be shifted from 60°C to 100°C. On the other hand, the best σ is observed in the thinner (100 nm) BiTe-based thin film devices under the higher T (130°C). Based on the understanding of S and σ values, the power factor and the figure of merit (ZT)-i.e., the ability of a TE material to efficiently produce electricity- A re also investigated further. Compared with the commercial bulk BiTe TE device, we demonstrate that the ZT value can be improved ∼50% with the thinner (100 nm) BiTe-based thin film devices in the higher T (>100°C) region.

原文英語
文章編號015020
期刊AIP Advances
8
發行號1
DOIs
出版狀態已發佈 - 2018 一月 1

ASJC Scopus subject areas

  • Physics and Astronomy(all)

指紋 深入研究「Thickness dependence of electrical conductivity and thermo-electric power of Bi<sub>2.0</sub>Te<sub>2.7</sub>Se<sub>0.3</sub>/Bi<sub>0.4</sub>Te<sub>3.0</sub>Sb<sub>1.6</sub> thermo-electric devices」主題。共同形成了獨特的指紋。

引用此