TY - JOUR
T1 - Thermalization of an Oscillating Bose Condensate in a Disordered Trap
AU - Hsueh, Che Hsiu
AU - Tsubota, Makoto
AU - Wu, Wen Chin
N1 - Publisher Copyright:
© 2019, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2019/7/15
Y1 - 2019/7/15
N2 - Previously, we numerically showed that thermalization can occur in an oscillating Bose–Einstein condensate with a disordered harmonic trap when the healing length ξ of the condensate is shorter than the correlation length σD of the Gaussian disorder [see, for example, the experiment reported in Dries et al. (Phys Rev A 82:033603, 2010)]. In this work, we investigate and show that in the ξ> σD (Anderson localization) regime, the system can also exhibit a relaxation process from nonequilibrium to equilibrium. In such an isolated quantum system, energy and particle number are conserved and the irreversible evolution toward thermodynamic equilibrium is induced by the disorder. The thermodynamic equilibrium is evidenced by the maximized entropy S[ nk] in which the waveaction spectrum nk follows the Rayleigh–Jeans distribution. Besides, unlike a monotonic irreversible process of thermalization to equilibrium, the Fermi–Pasta–Ulam–Tsingou recurrence arises in this system, manifested by the oscillation of the nonequilibrium entropy.
AB - Previously, we numerically showed that thermalization can occur in an oscillating Bose–Einstein condensate with a disordered harmonic trap when the healing length ξ of the condensate is shorter than the correlation length σD of the Gaussian disorder [see, for example, the experiment reported in Dries et al. (Phys Rev A 82:033603, 2010)]. In this work, we investigate and show that in the ξ> σD (Anderson localization) regime, the system can also exhibit a relaxation process from nonequilibrium to equilibrium. In such an isolated quantum system, energy and particle number are conserved and the irreversible evolution toward thermodynamic equilibrium is induced by the disorder. The thermodynamic equilibrium is evidenced by the maximized entropy S[ nk] in which the waveaction spectrum nk follows the Rayleigh–Jeans distribution. Besides, unlike a monotonic irreversible process of thermalization to equilibrium, the Fermi–Pasta–Ulam–Tsingou recurrence arises in this system, manifested by the oscillation of the nonequilibrium entropy.
KW - Anderson localization
KW - Disorder
KW - Irreversible process
KW - Thermalization
UR - http://www.scopus.com/inward/record.url?scp=85067311165&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85067311165&partnerID=8YFLogxK
U2 - 10.1007/s10909-019-02181-y
DO - 10.1007/s10909-019-02181-y
M3 - Article
AN - SCOPUS:85067311165
SN - 0022-2291
VL - 196
SP - 13
EP - 20
JO - Journal of Low Temperature Physics
JF - Journal of Low Temperature Physics
IS - 1-2
ER -