摘要
A systematic assessment is demonstrated for the explicitly modeling electrochemical CO dimerization on Cu(1 1 1) surface. The solvation configurations were sampling at room temperature with the presence of adsorbates and Cu surface. The energetics and work functions along the CO dimerization pathway were characterized with the inclusion of plate-type electric force fields. The activation barriers and reactions energies of CO dimerization process appear to be independent of the external electrostatic perturbations around 0.95 eV and 0.35 eV, respectively, with using the constant-potential correction. This observation based upon the current explicit simulations reaffirms the characteristics of CO dimerization as a thermal-driven process. The use of electric force fields ranging from + 0.2 V/Å to −0.2 V/Å could introduce the effective electrochemical potential from + 1.766 to −0.565 V vs standard hydrogen electrode at pH = 7 condition.
原文 | 英語 |
---|---|
文章編號 | 111821 |
期刊 | Chemical Physics |
卷 | 568 |
DOIs | |
出版狀態 | 已發佈 - 2023 4月 1 |
ASJC Scopus subject areas
- 一般物理與天文學
- 物理與理論化學