TY - JOUR
T1 - The new generation dihydropyridine type calcium blockers, bearing 4-phenyl oxypropanolamine, display α-/β-adrenoceptor antagonist and long-acting antihypertensive activities
AU - Liang, Jhy Chong
AU - Yeh, Jwu Lai
AU - Wang, Chia Sui
AU - Liou, Shwu Fen
AU - Tsai, Chieh Ho
AU - Chen, Ing Jun
N1 - Funding Information:
This work in chemical synthesis was supported by research grants from the Lotus Medical Supply Inc. (Taipei, Taiwan).
PY - 2002
Y1 - 2002
N2 - A new series of dihydropyridine derivatives, bearing oxypropanolamine moiety on phenyl ring at the 4-position of the dihydropyridine base, were prepared. Oxypropanolamine was synthesized by replacing the phenolic OH of vanillin or other compounds, having a phenyl aldehyde group, with epichlorohydrin, followed by cleavaging the obtained epoxide compounds with tert-butylamine, n-butylamine or 2-methoxy-1-oxyethylamino benzene (guaiacoxyethylamine), respectively. Obtained various oxypropanolamine compounds, still remaining a phenyl aldehyde moiety, were then performed by Hantzsch condensation reaction with methylacetoacetate or ethylacetoacetate, respectively, to give our new series of dihydropyridine linked with the 4-phenyl ring. These compounds were evaluated for inotropic, chronotropic, and aorta contractility that associated with calcium channel and adrenoceptor antagonist activities. Dihydropyridine derivatives that with oxypropanolamine side chain on their 4-phenyl ring associated α-/β-adrenoceptor blocking activities created a new family of calcium entry and the third generation β-adrenoceptor blockers. Optimizing this research to obtain more potent α-/β-adrenoceptor blocking and long-acting antihypertensive oxypropanolamine on the 4-phenyl ring of dihydropyridine series compounds was thus accomplished and classified as third generation dihydropyridine type calcium channel blockers, in comparison with previous short-acting type nifedipine and long-acting type amlodipine. We concluded that compounds 1a, 1b and 1g showed not only markedly high calcium-antagonistic activity but also the highest antihypertensive effect; compounds 1b, 1c, 1f, 1g, 1i and 1j induced sustained antihypertensive effects are major and attributed to their calcium entry and α-adrenoceptor blocking activities in the blood vessel due to their introduction of 2-methoxy, 1-oxyethylamino benzene moiety in the side chain on the 4-phenyl ring of dihydropyridine. Bradycardiac effects of all the compounds 1a-1j resulted from calcium entry and β-adrenoceptor blocking, which attenuate the sympathetic activation-associated reflex tachycardia in the heart. We selected compound 1b as candidate compound for further pharmacological and pre-clinical evaluation studies.
AB - A new series of dihydropyridine derivatives, bearing oxypropanolamine moiety on phenyl ring at the 4-position of the dihydropyridine base, were prepared. Oxypropanolamine was synthesized by replacing the phenolic OH of vanillin or other compounds, having a phenyl aldehyde group, with epichlorohydrin, followed by cleavaging the obtained epoxide compounds with tert-butylamine, n-butylamine or 2-methoxy-1-oxyethylamino benzene (guaiacoxyethylamine), respectively. Obtained various oxypropanolamine compounds, still remaining a phenyl aldehyde moiety, were then performed by Hantzsch condensation reaction with methylacetoacetate or ethylacetoacetate, respectively, to give our new series of dihydropyridine linked with the 4-phenyl ring. These compounds were evaluated for inotropic, chronotropic, and aorta contractility that associated with calcium channel and adrenoceptor antagonist activities. Dihydropyridine derivatives that with oxypropanolamine side chain on their 4-phenyl ring associated α-/β-adrenoceptor blocking activities created a new family of calcium entry and the third generation β-adrenoceptor blockers. Optimizing this research to obtain more potent α-/β-adrenoceptor blocking and long-acting antihypertensive oxypropanolamine on the 4-phenyl ring of dihydropyridine series compounds was thus accomplished and classified as third generation dihydropyridine type calcium channel blockers, in comparison with previous short-acting type nifedipine and long-acting type amlodipine. We concluded that compounds 1a, 1b and 1g showed not only markedly high calcium-antagonistic activity but also the highest antihypertensive effect; compounds 1b, 1c, 1f, 1g, 1i and 1j induced sustained antihypertensive effects are major and attributed to their calcium entry and α-adrenoceptor blocking activities in the blood vessel due to their introduction of 2-methoxy, 1-oxyethylamino benzene moiety in the side chain on the 4-phenyl ring of dihydropyridine. Bradycardiac effects of all the compounds 1a-1j resulted from calcium entry and β-adrenoceptor blocking, which attenuate the sympathetic activation-associated reflex tachycardia in the heart. We selected compound 1b as candidate compound for further pharmacological and pre-clinical evaluation studies.
UR - http://www.scopus.com/inward/record.url?scp=0036158329&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036158329&partnerID=8YFLogxK
U2 - 10.1016/S0968-0896(01)00318-2
DO - 10.1016/S0968-0896(01)00318-2
M3 - Article
C2 - 11814861
AN - SCOPUS:0036158329
SN - 0968-0896
VL - 10
SP - 719
EP - 730
JO - Bioorganic and Medicinal Chemistry
JF - Bioorganic and Medicinal Chemistry
IS - 3
ER -