The geometry of generalized Lamé equation, I

Zhijie Chen, Ting Jung Kuo, Chang Shou Lin*

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

6 引文 斯高帕斯(Scopus)

摘要

In this paper, we prove that the spectral curve Γn of the generalized Lamé equation with the Treibich–Verdier potential [Fourmula presented] can be embedded into the symmetric space SymNEτ of the N-th copy of the torus Eτ, where N=∑nk. This embedding induces an addition map σn(⋅|τ) from Γn onto Eτ. The main result is to prove that the degree of σn(⋅|τ) is equal to ∑k=0 3nk(nk+1)/2. This is the first step toward constructing the pre-modular form associated with this generalized Lamé equation.

原文英語
頁(從 - 到)89-120
頁數32
期刊Journal des Mathematiques Pures et Appliquees
127
DOIs
出版狀態已發佈 - 2019 7月

ASJC Scopus subject areas

  • 一般數學
  • 應用數學

指紋

深入研究「The geometry of generalized Lamé equation, I」主題。共同形成了獨特的指紋。

引用此