The forcing mechanism leading to the Kuroshio intrusion into the South China Sea

Chau Ron Wu*, Yi Chia Hsin


研究成果: 雜誌貢獻期刊論文同行評審

57 引文 斯高帕斯(Scopus)


[1] We use a high-resolution numerical model to examine the forcing mechanism responsible for Kuroshio intrusion into the South China Sea (SCS). The collective wisdom is that variations in Kuroshio intrusion are closely related to the wind, inside or outside the SCS. A series of experiments was performed to identify the wind-related forcing regulating the intrusion. The experiments demonstrated that the importance of wind inside the SCS is greater than that outside the SCS. Furthermore, the northwestward Ekman drift due to northeasterly wind in winter intensifies the upstream Kuroshio in the Luzon Strait, enhancing the Kuroshio intrusion into the SCS. In particular, the wind stress curl (WSC) off southwest Taiwan is chiefly responsible for the Kuroshio intrusion. Both the WSC and intrusion show both seasonal and intraseasonal variation. As the negative WSC off southwest Taiwan becomes stronger, it contributes to anticyclonic circulation. The enhanced anticyclonic circulation helps the development of the Kuroshio intrusion. The consistency between WSC variability and the intrusion suggests that the WSC off southwest Taiwan is essential to the Kuroshio intrusion variability.

期刊Journal of Geophysical Research: Oceans
出版狀態已發佈 - 2012

ASJC Scopus subject areas

  • 地球化學與岩石學
  • 地球物理
  • 地球與行星科學(雜項)
  • 空間與行星科學
  • 海洋學


深入研究「The forcing mechanism leading to the Kuroshio intrusion into the South China Sea」主題。共同形成了獨特的指紋。