TY - JOUR
T1 - The curious case of the rock at Venera 8
AU - Shellnutt, J. Gregory
N1 - Publisher Copyright:
© 2018 Elsevier Inc.
PY - 2019/3/15
Y1 - 2019/3/15
N2 - The surface rock composition measured by gamma (γ)-ray spectrometry at the Venera 8 landing site has anomalously high Th (6.5 ± 2.2 ppm) and U (2.2 ± 0.7 ppm) concentrations with respect to the material analyzed at other landing sites (Vega 1, Vega 2, Venera 9, Venera 10). A calculated bulk rock composition of Venera 8, constrained by the measured Th, U and K2O (4.0 ± 1.2 wt%) contents, is similar to silicic to intermediate rocks (diorite/granodiorite) that are typical of terrestrial convergent margins (magnesian, calc-alkalic). In this study, major and trace elemental modeling is applied in order to determine if the calculated whole rock composition of Venera 8 can be derived from a parental magma composition similar to Venusian basalt. The modeling results indicate that polybaric fractional crystallization of a hydrous (H2O = 0.4 wt%) and relatively oxidizing (ΔFMQ + 0.7) parental composition similar to Venera 14 basalt can yield residual silicic liquids that match the calculated Venera 8 whole rock composition. The measured Th and U concentrations can also be reproduced within the data uncertainty. Although Venus lacks modern Earth-style plate tectonics, magnesian, calc-alkalic compositions are common within Archean greenstone belts and some rift settings (Haida Gwaii). Consequently, it is possible that the Venera 8 probe encountered a fragment of crust that resembles a terrestrial greenstone belt.
AB - The surface rock composition measured by gamma (γ)-ray spectrometry at the Venera 8 landing site has anomalously high Th (6.5 ± 2.2 ppm) and U (2.2 ± 0.7 ppm) concentrations with respect to the material analyzed at other landing sites (Vega 1, Vega 2, Venera 9, Venera 10). A calculated bulk rock composition of Venera 8, constrained by the measured Th, U and K2O (4.0 ± 1.2 wt%) contents, is similar to silicic to intermediate rocks (diorite/granodiorite) that are typical of terrestrial convergent margins (magnesian, calc-alkalic). In this study, major and trace elemental modeling is applied in order to determine if the calculated whole rock composition of Venera 8 can be derived from a parental magma composition similar to Venusian basalt. The modeling results indicate that polybaric fractional crystallization of a hydrous (H2O = 0.4 wt%) and relatively oxidizing (ΔFMQ + 0.7) parental composition similar to Venera 14 basalt can yield residual silicic liquids that match the calculated Venera 8 whole rock composition. The measured Th and U concentrations can also be reproduced within the data uncertainty. Although Venus lacks modern Earth-style plate tectonics, magnesian, calc-alkalic compositions are common within Archean greenstone belts and some rift settings (Haida Gwaii). Consequently, it is possible that the Venera 8 probe encountered a fragment of crust that resembles a terrestrial greenstone belt.
KW - Greenstone belt
KW - Proto-continental crust
KW - Silicic rock
KW - Venera 8
KW - Venus
UR - http://www.scopus.com/inward/record.url?scp=85056264215&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85056264215&partnerID=8YFLogxK
U2 - 10.1016/j.icarus.2018.11.001
DO - 10.1016/j.icarus.2018.11.001
M3 - Article
AN - SCOPUS:85056264215
SN - 0019-1035
VL - 321
SP - 50
EP - 61
JO - Icarus
JF - Icarus
ER -