Text-enhanced attribute-based attention for generalized zero-shot fine-grained image classification

Yan He Chen, Mei Chen Yeh

研究成果: 書貢獻/報告類型會議論文篇章

1 引文 斯高帕斯(Scopus)

摘要

We address the generalized zero-shot fine-grained image classification problem, in which classes are visually similar and training images for some classes are not available. We leverage auxiliary information in the form of textual descriptions to facilitate the task. Specifically, we propose a text-enhanced attribute-based attention mechanism to compute features from the most relevant image regions guided from the most relevant attributes. Experiments on two popular datasets of CUB and AWA2 show the effectiveness of the proposed method.

原文英語
主出版物標題ICMR 2021 - Proceedings of the 2021 International Conference on Multimedia Retrieval
發行者Association for Computing Machinery, Inc
頁面447-450
頁數4
ISBN(電子)9781450384636
DOIs
出版狀態已發佈 - 2021 8月 24
事件11th ACM International Conference on Multimedia Retrieval, ICMR 2021 - Taipei, 臺灣
持續時間: 2021 11月 162021 11月 19

出版系列

名字ICMR 2021 - Proceedings of the 2021 International Conference on Multimedia Retrieval

會議

會議11th ACM International Conference on Multimedia Retrieval, ICMR 2021
國家/地區臺灣
城市Taipei
期間2021/11/162021/11/19

ASJC Scopus subject areas

  • 電腦繪圖與電腦輔助設計
  • 電腦科學應用
  • 電腦視覺和模式識別
  • 人機介面
  • 軟體

指紋

深入研究「Text-enhanced attribute-based attention for generalized zero-shot fine-grained image classification」主題。共同形成了獨特的指紋。

引用此