Ternary AlGexP alloy compounds for high capacity and rate capability of lithium-ion battery anodes

Wenwu Li*, Jiajun Wen, Anjie Chen, Jeng Han Wang, Meilin Liu, Ho Seok Park*

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

11 引文 斯高帕斯(Scopus)

摘要

Despite the high volumetric capacity of Ge-based anodes, their practical applications are still limited by low cycling stability and rate performance. To resolve these challenges, herein, we simultaneously incorporate both Al and P into Ge to synthesize AlGexP (x = 6, 2, 2/3) series materials through a facile mechanical ball milling method. Experiments and theoretical calculations confirm that AlGe2P provides the fastest electronic conductivity and Li-ion diffusion capability, thus providing the best Li-storage performance among AlGexP (x = 6, 2, 2/3) series materials. As verified by ex situ characterization, AlGe2P features a reversible Li-storage mechanism arising from the first intercalation stage followed by conversion reactions, where the electronically conducting Li15GeP3, Li4.4Ge, and LiAl and Li-ion conducting Li3P, Li4.4Ge and LiAl are simultaneously produced, ensuring fast charge storage kinetics upon cycling. Accordingly, the AlGe2P/C composite presents a long-term cycling stability of retaining 867 mA h g−1 after 800 cycles at 2000 mA g−1, and a high-rate capacity of 454 mA h g−1 even at 20 000 mA g−1, thus holding promise for real world applications. Broadly, the ternary all-lithium-reactive Ge-based compounds have great application potential in the energy storage field due to their intriguing physiochemical properties.

原文英語
頁(從 - 到)25329-25336
頁數8
期刊Journal of Materials Chemistry A
10
發行號47
DOIs
出版狀態已發佈 - 2022 11月 7

ASJC Scopus subject areas

  • 一般化學
  • 可再生能源、永續發展與環境
  • 一般材料科學

指紋

深入研究「Ternary AlGexP alloy compounds for high capacity and rate capability of lithium-ion battery anodes」主題。共同形成了獨特的指紋。

引用此