TY - JOUR
T1 - Synthesis of meso-pyrrole-substituted 22-oxacorroles by a "3+2" approach
AU - Kalita, Hemanta
AU - Kalita, Dhrubajyoti
AU - Lee, Way Zen
AU - Bellare, Jayesh
AU - Ravikanth, Mangalampalli
PY - 2014/8/11
Y1 - 2014/8/11
N2 - Unsymmetrical 22-oxacorrole containing two aryl groups and one pyrrole group at the meso position was synthesized by condensing one equivalent of 16-oxatripyrrane with one equivalent of meso aryl dipyromethane under mild acid-catalyzed conditions followed by oxidation with 2,3-dichloro-5,6-dicyano-1, 4-benzoquinone (DDQ). This [3+2] condensation approach was expected to yield meso-free 25-oxasmaragdyrin but unexpectedly afforded unsymmetrical meso-pyrrole-substituted 22-oxacorrole. We demonstrated the versatility of the reaction by synthesizing four new meso-pyrrole-substituted 22-oxacorroles. The reactivity of α-position of meso-pyrrole was tested by carrying out various functionalization reactions such as bromination, formylation, and nitration and obtained the functionalized meso-pyrrole-substituted 22-oxacorroles in decent yields. The X-ray structure obtained for one of the functionalized meso-pyrrole substituted 22-oxacorrole revealed that the macrocycle was nearly planar and the meso-pyrrole was in the perpendicular orientation with respect to the macrocyclic plane. The meso-pyrrole-substituted 22-oxacorroles absorb strongly in 400-700nm region with one strong Soret band and four weak Q bands. The 22-oxacorroles are strongly fluorescent and showed emission maxima at ≈650nm with decent quantum yields and singlet-state lifetimes. The 22-oxacorroles are redox-active and exhibited three irreversible oxidations and one or two reversible reduction(s). A preliminary biological study indicated that meso-pyrrole corroles are biocompatible.
AB - Unsymmetrical 22-oxacorrole containing two aryl groups and one pyrrole group at the meso position was synthesized by condensing one equivalent of 16-oxatripyrrane with one equivalent of meso aryl dipyromethane under mild acid-catalyzed conditions followed by oxidation with 2,3-dichloro-5,6-dicyano-1, 4-benzoquinone (DDQ). This [3+2] condensation approach was expected to yield meso-free 25-oxasmaragdyrin but unexpectedly afforded unsymmetrical meso-pyrrole-substituted 22-oxacorrole. We demonstrated the versatility of the reaction by synthesizing four new meso-pyrrole-substituted 22-oxacorroles. The reactivity of α-position of meso-pyrrole was tested by carrying out various functionalization reactions such as bromination, formylation, and nitration and obtained the functionalized meso-pyrrole-substituted 22-oxacorroles in decent yields. The X-ray structure obtained for one of the functionalized meso-pyrrole substituted 22-oxacorrole revealed that the macrocycle was nearly planar and the meso-pyrrole was in the perpendicular orientation with respect to the macrocyclic plane. The meso-pyrrole-substituted 22-oxacorroles absorb strongly in 400-700nm region with one strong Soret band and four weak Q bands. The 22-oxacorroles are strongly fluorescent and showed emission maxima at ≈650nm with decent quantum yields and singlet-state lifetimes. The 22-oxacorroles are redox-active and exhibited three irreversible oxidations and one or two reversible reduction(s). A preliminary biological study indicated that meso-pyrrole corroles are biocompatible.
KW - ABC-type corroles
KW - biocompatible
KW - fluorescent probes
KW - pyrrolyl-22-oxacorroles
KW - UV/Vis spectroscopy
UR - http://www.scopus.com/inward/record.url?scp=84905435240&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84905435240&partnerID=8YFLogxK
U2 - 10.1002/chem.201402710
DO - 10.1002/chem.201402710
M3 - Article
AN - SCOPUS:84905435240
VL - 20
SP - 10404
EP - 10413
JO - Chemistry - A European Journal
JF - Chemistry - A European Journal
SN - 0947-6539
IS - 33
ER -