摘要
The surface morphology, magnetism and chemical state of Fe coverage on the surface of molybdenum disulfide (MoS 2 ) were investigated using scanning tunneling microscopy, magneto-optical Kerr effect, and depth-profiling X-ray photoemission spectroscopy (XPS). Fe deposition on the MoS 2 substrate resulted in a nanoparticle array with the particle size ranged few nanometers (∼3±1 nm). For low-coverage Fe deposition <6 ML, nanoparticles were well-separated and long-range magnetic ordering was absent at room temperature. When the Fe coverage was increased, in-plane magnetic anisotropy was observed and the magnetic coercivity increased monotonically. The depth-profiling XPS showed the presence of a pure Fe state without observable chemical shift at the Fe/MoS 2 interface. The XPS measurement of Pd/2 ML Fe/MoS 2 also confirmed the dominance of the pure Fe state at the interface. The increase in Fe coverage changed the morphology from a nanoparticle array to a continuous coverage, leading to the onset of the ferromagnetic ordering and the transition from continuous surface oxidation to a bilayer structure.
原文 | 英語 |
---|---|
頁(從 - 到) | 551-557 |
頁數 | 7 |
期刊 | Applied Surface Science |
卷 | 357 |
DOIs | |
出版狀態 | 已發佈 - 2015 12月 1 |
ASJC Scopus subject areas
- 一般化學
- 凝聚態物理學
- 一般物理與天文學
- 表面和介面
- 表面、塗料和薄膜