摘要
CoFeB/MgO-based magnetic tunnel junctions (MTJs) have considerable potential in magnetic random access memory (MRAM), thanks to their tunable perpendicular magnetic anisotropy (PMA). We found significant reduction of dead-layer by inserting additional MgO into the MTJ structure. Interface, electronic and transport characterizations were utilized to approach the modified magnetic properties driven by the dual-MgO structure in this work. The dual-MgO structure appeared to hinder boron (B) diffusion into the metallic layer and prevent capping-layer (Ta) penetration across the interface. This suppressed the dead-layer effect and promoted overall magnetization despite PMA degradation. A robust BO x phase that formed within the dual-MgO structure presented a superparamagnetic ground state. In the single-MgO structure, any reduction in the thickness of the CoFeB promoted PMA, albeit at the cost of spin-polarization. The dual-MgO structure could restore spin-polarization by preferentially populating spin electrons into Fe/Co minority states. X-ray magnetic spectroscopy and anomalous Hall effect suggest that, the dual-MgO differs from the single-MgO with a favorable longitudinal polarized spin-channel. This makes the dual-MgO structure applicable to applications requiring in-plane rather than out-of-plane sensing.
原文 | 英語 |
---|---|
頁(從 - 到) | 529-535 |
頁數 | 7 |
期刊 | Applied Surface Science |
卷 | 457 |
DOIs | |
出版狀態 | 已發佈 - 2018 11月 1 |
ASJC Scopus subject areas
- 一般化學
- 凝聚態物理學
- 一般物理與天文學
- 表面和介面
- 表面、塗料和薄膜