TY - JOUR
T1 - Summer Convective Afternoon Rainfall Simulation and Projection Using WRF Driven by Global Climate Model. Part I: Over Taiwan.
AU - Huang, Wan-Ru
AU - Chang, Ya-Hui
AU - Cheng, Chao-Tzuen
AU - Hsu, Huang-Hsiung
AU - Tu, Chia-Ying
AU - Kitoh, Akio
PY - 2016
Y1 - 2016
N2 - This paper is the first of a two-part study that investigates summer convective afternoon rainfall (CAR) activity over the East Asian continent through simulation and projection. We focus on the CAR activity over Taiwan in Part I. In Part II, the changes in CAR activity over South China and Luzon are examined. Using the WRF (Weather Research and Forecasting) model driven by two super-high resolution global climate models: HiRAM (High Resolution Atmospheric Model) and MRI (Meteorological Research Institute Atmospheric General Circulation Model), this study evaluates the performance of models (HiRAM, MRI, and WRF) used to simulate the summer CAR activity over Taiwan. The evaluations focus on the spatial-temporal variations in CAR activity during two time periods: the present-day (1979 - 2003, historical run) and the future (2075 - 2099, RCP8.5 scenario). For the present-day simulations, analyses indicate that both HiRAM and MRI cannot accurately simulate the temporal evolution of diurnal rainfall. This timing shift problem can be fixed after dynamical downscaling using WRF. The WRF dynamical downscaling approach also helps generate a more realistic CAR amount simulation over western Taiwan, where most residents live. In future projections all models predict that a significant decrease in CAR amount will occur over southwest Taiwan. This decrease in CAR amount is suggested due to the decrease in CAR frequency, not a change in the CAR rate. All models suggest that the cause of decrease in CAR frequency over southwest Taiwan is weaker local afternoon surface wind convergence and thermal instability to suppress CAR genesis.
AB - This paper is the first of a two-part study that investigates summer convective afternoon rainfall (CAR) activity over the East Asian continent through simulation and projection. We focus on the CAR activity over Taiwan in Part I. In Part II, the changes in CAR activity over South China and Luzon are examined. Using the WRF (Weather Research and Forecasting) model driven by two super-high resolution global climate models: HiRAM (High Resolution Atmospheric Model) and MRI (Meteorological Research Institute Atmospheric General Circulation Model), this study evaluates the performance of models (HiRAM, MRI, and WRF) used to simulate the summer CAR activity over Taiwan. The evaluations focus on the spatial-temporal variations in CAR activity during two time periods: the present-day (1979 - 2003, historical run) and the future (2075 - 2099, RCP8.5 scenario). For the present-day simulations, analyses indicate that both HiRAM and MRI cannot accurately simulate the temporal evolution of diurnal rainfall. This timing shift problem can be fixed after dynamical downscaling using WRF. The WRF dynamical downscaling approach also helps generate a more realistic CAR amount simulation over western Taiwan, where most residents live. In future projections all models predict that a significant decrease in CAR amount will occur over southwest Taiwan. This decrease in CAR amount is suggested due to the decrease in CAR frequency, not a change in the CAR rate. All models suggest that the cause of decrease in CAR frequency over southwest Taiwan is weaker local afternoon surface wind convergence and thermal instability to suppress CAR genesis.
KW - Dynamical downscaling
KW - Model simulations
KW - Local rainfall
KW - Taiwan
U2 - 10.3319/TAO.2016.05.02.01
DO - 10.3319/TAO.2016.05.02.01
M3 - Article
VL - 27
SP - 659
EP - 671
JO - Terrestrial, Atmospheric Oceanic Sciences
JF - Terrestrial, Atmospheric Oceanic Sciences
IS - 5
ER -