TY - JOUR
T1 - Successful fabrication of a convex platform PMMA cell-counting slide using a high-precision perpendicular dual-spindle CNC machine tool
AU - Chen, Shun Tong
AU - Chang, Chih Hsien
PY - 2013/12
Y1 - 2013/12
N2 - This study presents a novel approach to the fabrication of a biomedical-mold for producing convex platform PMMA (poly-methyl-meth-acrylate) slides for counting cells. These slides allow for the microscopic examination of urine sediment cells. Manufacturing of such slides incorporates three important procedures: (1) the development of a tabletop high-precision dual-spindle CNC (computerized numerical control) machine tool; (2) the formation of a boron-doped polycrystalline composite diamond (BD-PCD) wheel-tool on the machine tool developed in procedure (1); and (3) the cutting of a multi-groove- biomedical-mold array using the formed diamond wheel-tool in situ on the developed machine. The machine incorporates a hybrid working platform providing wheel-tool thinning using spark erosion to cut, polish, and deburr microgrooves on NAK80 steel directly. With consideration given for the electrical conductive properties of BD-PCD, the diamond wheel-tool is thinned to a thickness of 5 μm by rotary wire electrical discharge machining. The thinned wheel-tool can grind microgrooves 10 μm wide. An embedded design, which inserts a close fitting precision core into the biomedical-mold to create step-difference (concave inward) of 50 μm in height between the core and the mold, is also proposed and realized. The perpendicular dual-spindles and precision rotary stage are features that allow for biomedical-mold machining without the necessity of uploading and repositioning materials until all tasks are completed. A PMMA biomedical-slide with a plurality of juxtaposed counting chambers is formed and its usefulness verified.
AB - This study presents a novel approach to the fabrication of a biomedical-mold for producing convex platform PMMA (poly-methyl-meth-acrylate) slides for counting cells. These slides allow for the microscopic examination of urine sediment cells. Manufacturing of such slides incorporates three important procedures: (1) the development of a tabletop high-precision dual-spindle CNC (computerized numerical control) machine tool; (2) the formation of a boron-doped polycrystalline composite diamond (BD-PCD) wheel-tool on the machine tool developed in procedure (1); and (3) the cutting of a multi-groove- biomedical-mold array using the formed diamond wheel-tool in situ on the developed machine. The machine incorporates a hybrid working platform providing wheel-tool thinning using spark erosion to cut, polish, and deburr microgrooves on NAK80 steel directly. With consideration given for the electrical conductive properties of BD-PCD, the diamond wheel-tool is thinned to a thickness of 5 μm by rotary wire electrical discharge machining. The thinned wheel-tool can grind microgrooves 10 μm wide. An embedded design, which inserts a close fitting precision core into the biomedical-mold to create step-difference (concave inward) of 50 μm in height between the core and the mold, is also proposed and realized. The perpendicular dual-spindles and precision rotary stage are features that allow for biomedical-mold machining without the necessity of uploading and repositioning materials until all tasks are completed. A PMMA biomedical-slide with a plurality of juxtaposed counting chambers is formed and its usefulness verified.
UR - http://www.scopus.com/inward/record.url?scp=84889010320&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84889010320&partnerID=8YFLogxK
U2 - 10.1088/0960-1317/23/12/125030
DO - 10.1088/0960-1317/23/12/125030
M3 - Article
AN - SCOPUS:84889010320
SN - 0960-1317
VL - 23
JO - Journal of Micromechanics and Microengineering
JF - Journal of Micromechanics and Microengineering
IS - 12
M1 - 125030
ER -