摘要
As the strained engineering technology of metal-oxide-semiconductor field effect transistors (MOS-FET) is scaled beyond the 22 nm node critical dimension, shallow trench isolation (STI) becomes one of the most important resolutions for isolate devices to enhance the carrier mobility of advanced transistors. Several key design factors of n-type MOSFET (NMOSFET) under the resultant loadings of STI structures and contact etching stop layers are sensitively analyzed for silicon channel stress via finite element method-based simulations integrated with the use of design of experienmnts. NMOSFETs with 15 nm deep sunken STI have achieved a ∼5% mobility enhancement as compared with a regular STI shape. By adopting simulation-based factorial designs, we have determined that the design factor of recess depth in STI is a critical factor influencing device performance. Moreover, a response surface curve on carrier mobility of NMOSFET under a consideration of combining the sunken STI and source/drain lengths is further presented in this research.
原文 | 英語 |
---|---|
頁(從 - 到) | 2179-2184 |
頁數 | 6 |
期刊 | Journal of Nanoscience and Nanotechnology |
卷 | 15 |
發行號 | 3 |
DOIs | |
出版狀態 | 已發佈 - 2015 1月 1 |
ASJC Scopus subject areas
- 生物工程
- 一般化學
- 生物醫學工程
- 一般材料科學
- 凝聚態物理學