Spin-controlled LEDs and VCSELs

S. Hövel, N. C. Gerhardt, C. Brenner, M. R. Hofmann, F. Y. Lo, D. Reuter, A. D. Wieck, E. Schuster, W. Keune

研究成果: 雜誌貢獻文章

12 引文 斯高帕斯(Scopus)

摘要

Two different concepts for transferring spin-optoelectronics to practical room temperature operation devices are explained. First, electrical spin injection in the absence of an external magnetic field and up to room temperature is demonstrated for the first time using Fe/Tb-multilayers as Schottky-injectors on common LED-strucrures. Complete switching of the polarization from one orientation to the opposite is feasible within ±0.3 T. Second, the amplification of spin-information in vertical-cavity surface-emitting lasers (VCSELs) is demonstrated by optical test experiments. The output polarization of the VCSEL is unambiguously controlled by the polarized optical excitation. Furthermore, only a spin polarization degree of 30% for the electrons in the active region is required to generate a 100% polarized emission at room temperature for both pulsed and continuous optical excitation. Finally, we suggest a combination of both concepts in an electrically pumped spin-VCSEL.

原文英語
頁(從 - 到)500-507
頁數8
期刊Physica Status Solidi (A) Applications and Materials Science
204
發行號2
DOIs
出版狀態已發佈 - 2007 二月 1

    指紋

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Electrical and Electronic Engineering
  • Materials Chemistry

引用此

Hövel, S., Gerhardt, N. C., Brenner, C., Hofmann, M. R., Lo, F. Y., Reuter, D., Wieck, A. D., Schuster, E., & Keune, W. (2007). Spin-controlled LEDs and VCSELs. Physica Status Solidi (A) Applications and Materials Science, 204(2), 500-507. https://doi.org/10.1002/pssa.200673219