@inproceedings{a59dc533d2dc4f2489e10e957c5d6997,
title = "Sphere decoding for spatial permutation modulation MIMO systems",
abstract = "Multiple-input multiple-output (MIMO) is an essential technology for modern wireless communication systems. Spatial modulation (SM) is an evolving MIMO transmission scheme for energy-efficient massive MIMO systems. SM conveys the information of transmit antenna indices and modulated symbols in MIMO systems. A variant spatial permutation modulation (SPM) was further proposed to include transmit and time diversities by transmitting a permutation array of antenna indices during several time instants. The SPM achieves better error rate performance than the SM especially in fast fading channel. This paper investigates sphere decoding algorithms for the SPM receiver. An ordering scheme was proposed to reduce the number of visited nodes in the spherical tree search. The improved ordered sphere decoding saves about 95.6% computational complexity corresponding to 22.7 times throughput in the software implementation.",
author = "Chi, {Jung Chun} and Yeh, {Yu Cheng} and Lai, {I. Wei} and Huang, {Yuan Hao}",
note = "Publisher Copyright: {\textcopyright} 2017 IEEE.; 2017 IEEE International Conference on Communications, ICC 2017 ; Conference date: 21-05-2017 Through 25-05-2017",
year = "2017",
month = jul,
day = "28",
doi = "10.1109/ICC.2017.7997167",
language = "English",
series = "IEEE International Conference on Communications",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
editor = "Merouane Debbah and David Gesbert and Abdelhamid Mellouk",
booktitle = "2017 IEEE International Conference on Communications, ICC 2017",
}