Spatial disorder of soliton solutions for 2D nonlinear Schrödinger lattices

研究成果: 書貢獻/報告類型會議貢獻

摘要

In this paper, we employ the construction of topological horseshoes to study the pattern of the soliton solutions to the discrete nonlinear Schrödinger (DNLS) equations in a twodimensional lattice. The spatial disorder of the DNLS equations is the result of the strong amplitudes and stiffness of the nonlinearities. The complexity of this disorder is determined by the oscillations (number of turning points) of the nonlinearities. Nonnegative soliton solutions of the DNLS equations with a cubic nonlinearity is also discussed.

原文英語
主出版物標題Proceedings of the World Congress on Engineering 2011, WCE 2011
頁面7-12
頁數6
1
出版狀態已發佈 - 2011
事件World Congress on Engineering 2011, WCE 2011 - London, 英国
持續時間: 2011 七月 62011 七月 8

其他

其他World Congress on Engineering 2011, WCE 2011
國家英国
城市London
期間11/7/611/7/8

ASJC Scopus subject areas

  • Computer Science(all)
  • Engineering(all)
  • Applied Mathematics

指紋 深入研究「Spatial disorder of soliton solutions for 2D nonlinear Schrödinger lattices」主題。共同形成了獨特的指紋。

引用此