Some statistics on Stirling permutations and Stirling derangements

Guan Huei Duh, Yen Chi Roger Lin, Shi Mei Ma, Yeong Nan Yeh

研究成果: 雜誌貢獻文章同行評審

2 引文 斯高帕斯(Scopus)

摘要

A permutation of the multiset {1,1,2,2,…,n,n} is called a Stirling permutation of order n if every entry between the two occurrences of i is greater than i for each i∈{1,2,…,n}. In this paper, we introduce the definitions of block, even indexed entry, odd indexed entry, Stirling derangement, marked permutation and bicolored increasing binary tree. We first study the joint distribution of ascent plateaux, even indexed entries and left-to-right minima over the set of Stirling permutations of order n. We then present an involution on Stirling derangements.

原文英語
頁(從 - 到)2478-2484
頁數7
期刊Discrete Mathematics
341
發行號9
DOIs
出版狀態已發佈 - 2018 九月 1

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Discrete Mathematics and Combinatorics

指紋 深入研究「Some statistics on Stirling permutations and Stirling derangements」主題。共同形成了獨特的指紋。

引用此