TY - JOUR
T1 - Some results on finite drinfeld modules
AU - Hsu, Chih Nung
PY - 1998
Y1 - 1998
N2 - Let K be a global function field, oo a degree one prime divisor of K and let A be the Dedekind domain of functions in K regular outside oo. Let H be the Hubert class field of A, B the integral closure of A in H. Let V be a rank one normalized Drinfeld A -module and let β be a prime ideal in B. We explicitly determine the finite A-moduIe structure of Ψ(B/βN). In particular, if K = Fq(t), q is an odd prime number and Ψ is the Carlitz Fq[t]-module, then the finite Fq[t]-module Ψ(Fq[t]/βN) is always cyclic.
AB - Let K be a global function field, oo a degree one prime divisor of K and let A be the Dedekind domain of functions in K regular outside oo. Let H be the Hubert class field of A, B the integral closure of A in H. Let V be a rank one normalized Drinfeld A -module and let β be a prime ideal in B. We explicitly determine the finite A-moduIe structure of Ψ(B/βN). In particular, if K = Fq(t), q is an odd prime number and Ψ is the Carlitz Fq[t]-module, then the finite Fq[t]-module Ψ(Fq[t]/βN) is always cyclic.
KW - Drinfeld modules
KW - Hubert class field
UR - http://www.scopus.com/inward/record.url?scp=22044452144&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=22044452144&partnerID=8YFLogxK
U2 - 10.1090/s0002-9939-98-04337-8
DO - 10.1090/s0002-9939-98-04337-8
M3 - Article
AN - SCOPUS:22044452144
SN - 0002-9939
VL - 126
SP - 1955
EP - 1961
JO - Proceedings of the American Mathematical Society
JF - Proceedings of the American Mathematical Society
IS - 7
ER -