TY - JOUR
T1 - Sodium thiosulfate through preserving mitochondrial dynamics ameliorates oxidative stress induced renal apoptosis and ferroptosis in 5/6 nephrectomized rats with chronic kidney diseases
AU - Cheng, Yu Hsuan
AU - Yao, Chien An
AU - Yang, Chih Ching
AU - Hsu, Shih Ping
AU - Chien, Chiang Ting
N1 - Publisher Copyright:
© 2023 Cheng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2023/2
Y1 - 2023/2
N2 - Chronic kidney disease (CKD) progression may be evoked through dysregulated mitochondrial dynamics enhanced oxidative stress and inflammation contributing to high cardiovascular morbidity and mortality. Previous study has demonstrated sodium thiosulfate (STS, Na2S2O3) could effectively attenuate renal oxidative injury in the animal model of renovascular hypertension. We explored whether the potentially therapeutic effect of STS is available on the attenuating CKD injury in thirty-six male Wistar rats with 5/6 nephrectomy. We determined the STS effect on reactive oxygen species (ROS) amount in vitro and in vivo by an ultrasensitive chemiluminescence-amplification method, ED-1 mediated inflammation, Masson’s trichrome stained fibrosis, mitochondrial dynamics (fission and fusion) and two types of programmed cell death, apoptosis and ferroptosis by western blot and immunohistochemistry. Our in vitro data showed STS displayed the strongest scavenging ROS activity at the dosage of 0.1 g. We applied STS at 0.1 g/kg intraperitoneally 5 times/week for 4 weeks to these CKD rats. CKD significantly enhanced the degree in arterial blood pressure, urinary protein, BUN, creatinine, blood and kidney ROS amount, leukocytes infiltration, renal 4-HNE expression, fibrosis, dynamin-related protein 1 (Drp1) mediated mitochondrial fission, Bax/c-caspase 9/c-caspase 3/poly (ADP-ribose) polymerase (PARP) mediated apoptosis, iron overload/ferroptosis and the decreased xCT/GPX4 expression and OPA-1 mediated mitochondrial fusion. STS treatment significantly ameliorated oxidative stress, leukocyte infiltration, fibrosis, apoptosis and ferroptosis and improved mitochondrial dynamics and renal dysfunction in CKD rats. Our results suggest that STS as drug repurposing strategy could attenuate CKD injury through the action of anti-mitochondrial fission, anti-inflammation, anti-fibrosis, anti-apoptotic, and anti-ferroptotic mechanisms.
AB - Chronic kidney disease (CKD) progression may be evoked through dysregulated mitochondrial dynamics enhanced oxidative stress and inflammation contributing to high cardiovascular morbidity and mortality. Previous study has demonstrated sodium thiosulfate (STS, Na2S2O3) could effectively attenuate renal oxidative injury in the animal model of renovascular hypertension. We explored whether the potentially therapeutic effect of STS is available on the attenuating CKD injury in thirty-six male Wistar rats with 5/6 nephrectomy. We determined the STS effect on reactive oxygen species (ROS) amount in vitro and in vivo by an ultrasensitive chemiluminescence-amplification method, ED-1 mediated inflammation, Masson’s trichrome stained fibrosis, mitochondrial dynamics (fission and fusion) and two types of programmed cell death, apoptosis and ferroptosis by western blot and immunohistochemistry. Our in vitro data showed STS displayed the strongest scavenging ROS activity at the dosage of 0.1 g. We applied STS at 0.1 g/kg intraperitoneally 5 times/week for 4 weeks to these CKD rats. CKD significantly enhanced the degree in arterial blood pressure, urinary protein, BUN, creatinine, blood and kidney ROS amount, leukocytes infiltration, renal 4-HNE expression, fibrosis, dynamin-related protein 1 (Drp1) mediated mitochondrial fission, Bax/c-caspase 9/c-caspase 3/poly (ADP-ribose) polymerase (PARP) mediated apoptosis, iron overload/ferroptosis and the decreased xCT/GPX4 expression and OPA-1 mediated mitochondrial fusion. STS treatment significantly ameliorated oxidative stress, leukocyte infiltration, fibrosis, apoptosis and ferroptosis and improved mitochondrial dynamics and renal dysfunction in CKD rats. Our results suggest that STS as drug repurposing strategy could attenuate CKD injury through the action of anti-mitochondrial fission, anti-inflammation, anti-fibrosis, anti-apoptotic, and anti-ferroptotic mechanisms.
UR - http://www.scopus.com/inward/record.url?scp=85148282044&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85148282044&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0277652
DO - 10.1371/journal.pone.0277652
M3 - Article
C2 - 36795670
AN - SCOPUS:85148282044
SN - 1932-6203
VL - 18
JO - PloS one
JF - PloS one
IS - 2 February
M1 - e0277652
ER -