摘要
Background/Aims: Arterial stenosis activates the renin-angiotensin-aldosterone system subsequently resulting in renovascular hypertension (RVHT) and renal oxidative injury. We explored the effect of sodium thiosulfate (STS, Na2S2O3), a developed antioxidant in clinical trial, on RVHT-induced hypertension and renal oxidative injury in rats. Methods: We induced RVHT in male Wistar rats with bilaterally partial ligation of renal arteries in the 2-kidney 2-clip model. We evaluated the STS effect on RVHT-induced oxidative injury and apoptosis by a chemiluminescence amplification method, Western blot, and immunohistochemistry. Results: We found STS displayed a dose-dependent antioxidant H2O2 activity and adapted the maximal scavenging H2O2 activity of STS at the dosage of 0.1 g/kg intraperitoneally 3 times/week for 4 weeks in RVHT rats. RVHT induced a significant elevation of arterial blood pressure, blood reactive oxygen species amount, neutrophil infiltration, 4-HNE and NADPH oxidase gp91 expression, Bax/Bcl-2/poly(ADP-ribose) polymerase (PARP)-mediated apoptosis formation, blue Masson-stained fibrosis, and urinary protein level. STS treatment significantly reduced hypertension, oxidative stress, neutrophil infiltration, fibrosis, and Bax/Bcl-2/PARP-mediated apoptosis formation and depressed the urinary protein level in the RVHT models. Conclusion: Our results suggest that STS treatment could ameliorate RVHT hypertension and renal oxidative injury through antioxidant, antifibrotic, and antiapoptotic mechanisms.
原文 | 英語 |
---|---|
頁(從 - 到) | 41-52 |
頁數 | 12 |
期刊 | Kidney and Blood Pressure Research |
卷 | 46 |
發行號 | 1 |
DOIs | |
出版狀態 | 已發佈 - 2021 2月 |
ASJC Scopus subject areas
- 腎臟病學
- 心臟病學與心血管醫學