Short-term traffic flow prediction using EMD-based recurrent Hermite neural network approach

Syuan Yi Chen*, Wei Yao Chou

*此作品的通信作者

研究成果: 書貢獻/報告類型會議論文篇章

18 引文 斯高帕斯(Scopus)

摘要

An empirical mode decomposition based recurrent Hermite neural network (ERHNN) prediction model is proposed to predict short-term traffic flow in this study. First, a recurrent Hermite neural network (RHNN) prediction model with different orthonormal Hermite polynomial basis functions (OHPBFs) as activation functions is introduced. Then, to further mitigate the influence of noise and improve the accuracy of prediction, an empirical mode decomposition (EMD) method is derived to decompose the original short-term traffic flow data into several intrinsic mode functions (IMFs) and adopt them as the inputs for the RHNNs. Therefore, an ERHNN prediction model, which comprises good predictive ability for the nonlinear and non-stationary signals through the combination of the merits of OHPBFs, EMD and EHNN, is proposed to predict short-term traffic flow more effectively. The validity of the ERHNN prediction model is verified using all day short-term traffic flow data at high way I-80W in California. Simulation results demonstrate that the proposed ERHNN prediction model is with superior performance compared with the pure recurrent neural network (RNN) and RHNN prediction models.

原文英語
主出版物標題2012 15th International IEEE Conference on Intelligent Transportation Systems, ITSC 2012
頁面1821-1826
頁數6
DOIs
出版狀態已發佈 - 2012
對外發佈
事件2012 15th International IEEE Conference on Intelligent Transportation Systems, ITSC 2012 - Anchorage, AK, 美国
持續時間: 2012 9月 162012 9月 19

出版系列

名字IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC

其他

其他2012 15th International IEEE Conference on Intelligent Transportation Systems, ITSC 2012
國家/地區美国
城市Anchorage, AK
期間2012/09/162012/09/19

ASJC Scopus subject areas

  • 汽車工程
  • 機械工業
  • 電腦科學應用

指紋

深入研究「Short-term traffic flow prediction using EMD-based recurrent Hermite neural network approach」主題。共同形成了獨特的指紋。

引用此