TY - JOUR
T1 - Semiconducting Coordination Polymers Based on the Predesigned Ternary Te-Fe-Cu Carbonyl Cluster and Conjugation-Interrupted Dipyridyl Linkers
AU - Shieh, Minghuey
AU - Yu, Chia Chi
AU - Miu, Chia Yeh
AU - Kung, Chang Hung
AU - Huang, Chung Yi
AU - Liu, Yu Hsin
AU - Liu, Hsiang Lin
AU - Shen, Chih Chiang
PY - 2017/8/22
Y1 - 2017/8/22
N2 - A series of semiconducting cluster-incorporated Cu-based coordination polymers, namely, 1D zigzag polymers [{TeFe3(CO)9Cu2}(L)]n (L=1,2-bis(4-pyridyl)ethane (bpea), 1; L=1,2-bis(4-pyridyl)ethylene (bpee), 5), 2D honeycomb-like polymers [{TeFe3(CO)9Cu}Cu(L)2.5]n (L=bpea, 2; L=bpee, 6), and 2D wave-like cation–anion polymer [{Cu2(L)4}({TeFe3(CO)9Cu}2(L))]n (L=1,3-bis(4-pyridyl)propane (bpp), 4), as well as the macrocycle [{TeFe3(CO)9Cu2}2(bpp)2] (3) have been quantitatively synthesized via the liquid-assisted grinding from the pre-designed cluster [TeFe3(CO)9Cu2(MeCN)2] with conjugated or conjugation-interrupted dipyridyl linkers. Notably, the most conjugation-interrupted bpp-bridged polymer 4 exhibited extraordinary semiconducting characteristics with an ultra-narrow bandgap of 1.43 eV and a DC conductivity of 1.5×10−2 Ω−1 cm−1, which violates our knowledge, mainly attributed to the through-space electron transport via non-classical C−H⋅⋅⋅O(carbonyl) hydrogen bonds and aromatic C−H⋅⋅⋅π interactions. The incorporated Te-Fe-CO anions can not only provide numerous possibilities for secondary interactions within these Cu-based polymers but also serve as a redox-active coordination ligand to promote their conductivities. The intriguing structure–property relationships were studied by X-ray and DFT analyses and further demonstrated by significant change in the oxidation state of Cu atoms by XPS and Cu K-edge XANES.
AB - A series of semiconducting cluster-incorporated Cu-based coordination polymers, namely, 1D zigzag polymers [{TeFe3(CO)9Cu2}(L)]n (L=1,2-bis(4-pyridyl)ethane (bpea), 1; L=1,2-bis(4-pyridyl)ethylene (bpee), 5), 2D honeycomb-like polymers [{TeFe3(CO)9Cu}Cu(L)2.5]n (L=bpea, 2; L=bpee, 6), and 2D wave-like cation–anion polymer [{Cu2(L)4}({TeFe3(CO)9Cu}2(L))]n (L=1,3-bis(4-pyridyl)propane (bpp), 4), as well as the macrocycle [{TeFe3(CO)9Cu2}2(bpp)2] (3) have been quantitatively synthesized via the liquid-assisted grinding from the pre-designed cluster [TeFe3(CO)9Cu2(MeCN)2] with conjugated or conjugation-interrupted dipyridyl linkers. Notably, the most conjugation-interrupted bpp-bridged polymer 4 exhibited extraordinary semiconducting characteristics with an ultra-narrow bandgap of 1.43 eV and a DC conductivity of 1.5×10−2 Ω−1 cm−1, which violates our knowledge, mainly attributed to the through-space electron transport via non-classical C−H⋅⋅⋅O(carbonyl) hydrogen bonds and aromatic C−H⋅⋅⋅π interactions. The incorporated Te-Fe-CO anions can not only provide numerous possibilities for secondary interactions within these Cu-based polymers but also serve as a redox-active coordination ligand to promote their conductivities. The intriguing structure–property relationships were studied by X-ray and DFT analyses and further demonstrated by significant change in the oxidation state of Cu atoms by XPS and Cu K-edge XANES.
KW - carbonyl ligands
KW - cluster compounds
KW - copper
KW - polymers
KW - through-space interactions
UR - http://www.scopus.com/inward/record.url?scp=85027863412&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85027863412&partnerID=8YFLogxK
U2 - 10.1002/chem.201701257
DO - 10.1002/chem.201701257
M3 - Article
AN - SCOPUS:85027863412
VL - 23
SP - 11261
EP - 11271
JO - Chemistry - A European Journal
JF - Chemistry - A European Journal
SN - 0947-6539
IS - 47
ER -