TY - JOUR
T1 - Root physiological and morphology processes co-regulate the growth of Chinese-fir saplings in response to warming and precipitation reduction in the sub-tropical regions
AU - Xiong, Decheng
AU - Huang, Jinxue
AU - Du, Xulong
AU - Lin, Teng chiu
AU - Liu, Yuanhao
AU - Chen, Shidong
AU - Liu, Xiaofei
AU - Xu, Chao
AU - Yang, Zhijie
AU - Yang, Yusheng
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/11/15
Y1 - 2024/11/15
N2 - Subtropical China is projected to experience elevated temperature greater than the mean global temperature increase and is accompanied by reduced precipitation. The plasticity of roots to changing environment strongly influences ecosystem feedbacks to climate change. However, knowledge gaps on the individual and combined effects of warming and precipitation reduction on root systems hinder our ability to accurately predict the growth and adaptability of forests under future climate change. To examine the effects of warming (W) and precipitation reduction (P) on roots physiology and morphology of Chinese-fir saplings, we used a randomized complete block design with factorial soil warming (ambient, ambient + 5℃) and precipitation reduction (ambient, ambient-50 %) treatments. A full excavation method was adopted to obtain roots, then we measured the root physiology (osmoregulatory substances, oxidant substances, protective enzymes, endogenous hormones), morphology (specific root length, SRL; surface root area, SRA; root tissue density, RTD). The content of carbon and nitrogen, isotopes (δ13C and δ15N); soil temperature, soil moisture and sapling growth were also measured. We found that compared with the control, W decreased the abscisic acid (IAA) content; P increased the contents of hydrogen peroxide (H2O2) and proline (Pro), and decreased the contents of IAA and cytokinin (CTK); warming plus precipitation reduction (WP) increased the Pro content, and decreased the contents of IAA and CTK. In addition, the effects of W and P on root morphology varied with soil depth and root diameter class. W, P, and WP all increased fine root SRL and SRA in deep soil. Warming and precipitation reduction could affect physiological traits (e.g. non-enzymatic substances and antioxidant enzymes) and subsequently morphological traits via influencing soil environment and root tissue chemistry. Collectively, the results indicated that Chinese-fir saplings responded to warming and precipitation reduction by comprehensive regulation of the non-enzymatic substances (e.g., osmotic substances and endogenous hormones) of fine roots and changing root morphological characteristics in deep soil.
AB - Subtropical China is projected to experience elevated temperature greater than the mean global temperature increase and is accompanied by reduced precipitation. The plasticity of roots to changing environment strongly influences ecosystem feedbacks to climate change. However, knowledge gaps on the individual and combined effects of warming and precipitation reduction on root systems hinder our ability to accurately predict the growth and adaptability of forests under future climate change. To examine the effects of warming (W) and precipitation reduction (P) on roots physiology and morphology of Chinese-fir saplings, we used a randomized complete block design with factorial soil warming (ambient, ambient + 5℃) and precipitation reduction (ambient, ambient-50 %) treatments. A full excavation method was adopted to obtain roots, then we measured the root physiology (osmoregulatory substances, oxidant substances, protective enzymes, endogenous hormones), morphology (specific root length, SRL; surface root area, SRA; root tissue density, RTD). The content of carbon and nitrogen, isotopes (δ13C and δ15N); soil temperature, soil moisture and sapling growth were also measured. We found that compared with the control, W decreased the abscisic acid (IAA) content; P increased the contents of hydrogen peroxide (H2O2) and proline (Pro), and decreased the contents of IAA and cytokinin (CTK); warming plus precipitation reduction (WP) increased the Pro content, and decreased the contents of IAA and CTK. In addition, the effects of W and P on root morphology varied with soil depth and root diameter class. W, P, and WP all increased fine root SRL and SRA in deep soil. Warming and precipitation reduction could affect physiological traits (e.g. non-enzymatic substances and antioxidant enzymes) and subsequently morphological traits via influencing soil environment and root tissue chemistry. Collectively, the results indicated that Chinese-fir saplings responded to warming and precipitation reduction by comprehensive regulation of the non-enzymatic substances (e.g., osmotic substances and endogenous hormones) of fine roots and changing root morphological characteristics in deep soil.
KW - Cunninghamia lanceolata
KW - Endogenous hormones
KW - Precipitation reduction
KW - Protective enzymes
KW - Root morphology
KW - Soil warming
UR - http://www.scopus.com/inward/record.url?scp=85206692665&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85206692665&partnerID=8YFLogxK
U2 - 10.1016/j.foreco.2024.122336
DO - 10.1016/j.foreco.2024.122336
M3 - Article
AN - SCOPUS:85206692665
SN - 0378-1127
VL - 572
JO - Forest Ecology and Management
JF - Forest Ecology and Management
M1 - 122336
ER -