Robust handwriting extraction and lecture video summarization

Greg C. Lee, Fu Hao Yeh*, Ying Ju Chen, Tao Ku Chang

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

16 引文 斯高帕斯(Scopus)

摘要

In e-Learning research, teachers can record lecture videos in e-class and upload these lecture videos to e-Learning system themselves. Once lecture videos and handouts can be generated automatically in traditional classroom, it can help students with self-learning and teacher with lecture content development for e-Learning services. This paper proposed a teaching assistant system based on computer vision that can help in content development for e-Learning services. Lecture videos are taken by using two cameras and merged on both sides so that students can see a clear and complete teaching content. The k-means segmentation is used to extract board area and then connected component technique helps refill the board area which is covered by lecturer’s body. Then we use adaptive threshold to extract handwritings in various light conditions and time-series denoising technique is designed to reduce noise. According to extracted handwritings, the lecture videos can be automatically structured with high level of semantics. The lecture videos are segmented into video clips and all key-frames are integrated as handouts of the education videos.

原文英語
頁(從 - 到)7067-7085
頁數19
期刊Multimedia Tools and Applications
76
發行號5
DOIs
出版狀態已發佈 - 2017 3月 1

ASJC Scopus subject areas

  • 軟體
  • 媒體技術
  • 硬體和架構
  • 電腦網路與通信

指紋

深入研究「Robust handwriting extraction and lecture video summarization」主題。共同形成了獨特的指紋。

引用此