TY - JOUR
T1 - Robust half-metallic antiferromagnets LaAVOs O6 and LaAMoY O6 (A=Ca, Sr,Ba; Y=Re, Tc) from first-principles calculations
AU - Wang, Y. K.
AU - Guo, G. Y.
PY - 2006
Y1 - 2006
N2 - We have theoretically designed three families of the half-metallic (HM) antiferromagnets (AFM), namely, LaAVOs O6, LaAMoTc O6, and LaAMoRe O6 (A=Ca, Sr,Ba), based on a systematic ab initio study of the ordered double perovskites LaAB B′ O6 with the possible B and B′ pairs from all the 3d, 4d, and 5d transition metal elements being considered. Electronic structure calculations based on first-principles density-functional theory with generalized gradient approximation for more than 60 double perovskites LaCaB B′ O6 have been performed using the all-electron full-potential linearized augmented-plane-wave method. The found HM-AFM state in these materials survives the full ab initio lattice constant and atomic position optimizations which were carried out using the frozen-core full potential projector augmented wave method. It is found that the HM-AFM properties predicted previously in some of the double perovskites would disappear after the full structural optimizations. The AFM is attributed to both the superexchange mechanism and the generalized double exchange mechanism via the B (t2g) -O (2 pπ) - B′ (t2g) coupling and the latter is also believed to be the origin of the HM. Finally, in our search for the HM-AFMs, we find LaACrTc O6 and LaACrRe O6 to be AFM insulators of an unconventional type in the sense that the two antiferromagnetic coupled ions consist of two different elements and that the two spin-resolved densities of states are no longer the same. It is hoped that our interesting predictions would stimulate further experimental searches for the HM-AFMs which have so far been unsuccessful.
AB - We have theoretically designed three families of the half-metallic (HM) antiferromagnets (AFM), namely, LaAVOs O6, LaAMoTc O6, and LaAMoRe O6 (A=Ca, Sr,Ba), based on a systematic ab initio study of the ordered double perovskites LaAB B′ O6 with the possible B and B′ pairs from all the 3d, 4d, and 5d transition metal elements being considered. Electronic structure calculations based on first-principles density-functional theory with generalized gradient approximation for more than 60 double perovskites LaCaB B′ O6 have been performed using the all-electron full-potential linearized augmented-plane-wave method. The found HM-AFM state in these materials survives the full ab initio lattice constant and atomic position optimizations which were carried out using the frozen-core full potential projector augmented wave method. It is found that the HM-AFM properties predicted previously in some of the double perovskites would disappear after the full structural optimizations. The AFM is attributed to both the superexchange mechanism and the generalized double exchange mechanism via the B (t2g) -O (2 pπ) - B′ (t2g) coupling and the latter is also believed to be the origin of the HM. Finally, in our search for the HM-AFMs, we find LaACrTc O6 and LaACrRe O6 to be AFM insulators of an unconventional type in the sense that the two antiferromagnetic coupled ions consist of two different elements and that the two spin-resolved densities of states are no longer the same. It is hoped that our interesting predictions would stimulate further experimental searches for the HM-AFMs which have so far been unsuccessful.
UR - http://www.scopus.com/inward/record.url?scp=33644500472&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33644500472&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.73.064424
DO - 10.1103/PhysRevB.73.064424
M3 - Article
AN - SCOPUS:33644500472
SN - 1098-0121
VL - 73
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 6
M1 - 064424
ER -