Robust dynamic sliding-mode control using adaptive RENN for magnetic levitation system

Faa Jeng Lin*, Syuan Yi Chen, Kuo Kai Shyu


研究成果: 雜誌貢獻期刊論文同行評審

90 引文 斯高帕斯(Scopus)


In this paper, a robust dynamic sliding mode control system (RDSMC) using a recurrent Elman neural network (RENN) is proposed to control the position of a levitated object of a magnetic levitation system considering the uncertainties. First, a dynamic model of the magnetic levitation system is derived. Then, a proportional-integral-derivative (PID)-type sliding-mode control system (SMC) is adopted for tracking of the reference trajectories. Moreover, a new PID-type dynamic sliding-mode control system (DSMC) is proposed to reduce the chattering phenomenon. However, due to the hardware being limited and the uncertainty bound being unknown of the switching function for the DSMC, an RDSMC is proposed to improve the control performance and further increase the robustness of the magnetic levitation system. In the RDSMC, an RENN estimator is used to estimate an unknown nonlinear function of lumped uncertainty online and replace the switching function in the hitting control of the DSMC directly. The adaptive learning algorithms that trained the parameters of the RENN online are derived using Lyapunov stability theorem. Furthermore, a robust compensator is proposed to confront the uncertainties including approximation error, optimal parameter vectors, and higher order terms in Taylor series. Finally, some experimental results of tracking the various periodic trajectories demonstrate the validity of the proposed RDSMC for practical applications.

頁(從 - 到)938-951
期刊IEEE Transactions on Neural Networks
出版狀態已發佈 - 2009

ASJC Scopus subject areas

  • 軟體
  • 電腦科學應用
  • 電腦網路與通信
  • 人工智慧


深入研究「Robust dynamic sliding-mode control using adaptive RENN for magnetic levitation system」主題。共同形成了獨特的指紋。