Robotic Grasping Strategies Based on Classification of Orientation State of Objects

Jui An Lin, Chen Chien Hsu

研究成果: 書貢獻/報告類型會議論文篇章

摘要

Robotic grasping has been studied for years, but still has lots of room for improvement due to its requirement of sufficient robustness to achieve a high success rate. This paper proposes grasping strategies that produce reliable grasping poses without human labeling. All the training and testing processes are performed in a simulation environment. We then further evaluate the quality of the grasping strategy produced by the system. High success rate result shows its potential of application in industrial production lines, helping the robot arms perform high-quality grasping with picking or similar tasks.

原文英語
主出版物標題2021 IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW 2021
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9781665433280
DOIs
出版狀態已發佈 - 2021
事件8th IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW 2021 - Penghu, 臺灣
持續時間: 2021 9月 152021 9月 17

出版系列

名字2021 IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW 2021

會議

會議8th IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW 2021
國家/地區臺灣
城市Penghu
期間2021/09/152021/09/17

ASJC Scopus subject areas

  • 人工智慧
  • 電腦科學應用
  • 電氣與電子工程
  • 控制和優化
  • 儀器

指紋

深入研究「Robotic Grasping Strategies Based on Classification of Orientation State of Objects」主題。共同形成了獨特的指紋。

引用此