Riemannian gradient descent for spherical area-preserving mappings

Marco Sutti*, Mei Heng Yueh*

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

摘要

We propose a new Riemannian gradient descent method for computing spherical area-preserving mappings of topological spheres using a Riemannian retraction-based framework with theoretically guaranteed convergence. The objective function is based on the stretch energy functional, and the minimization is constrained on a power manifold of unit spheres embedded in three-dimensional Euclidean space. Numerical experiments on several mesh models demonstrate the accuracy and stability of the proposed framework. Comparisons with three existing state-of-the-art methods for computing area-preserving mappings demonstrate that our algorithm is both competitive and more efficient. Finally, we present a concrete application to the problem of landmark-aligned surface registration of two brain models.

原文英語
頁(從 - 到)19414-19445
頁數32
期刊AIMS Mathematics
9
發行號7
DOIs
出版狀態已發佈 - 2024

ASJC Scopus subject areas

  • 一般數學

指紋

深入研究「Riemannian gradient descent for spherical area-preserving mappings」主題。共同形成了獨特的指紋。

引用此