摘要
A nuclear magnetic resonance and imaging system was constructed to study spin-lattice relaxation time T1, spin-spin relaxation time T 2, and effective relaxation time T2 of gadolinium (Gd) chelates using a high- Tc superconducting quantum interference device in microtesla magnetic fields. In the presence of the magnetic contrast T2 is related to T2 by the relation: 1/ T2 =1/ T2 +γΔB+ Gd-chelates, where γ=42.58 kHz/mT and γΔB is the relaxation rate due to the inhomogeneity field ΔB in measuring coil at the sample position and Gd-chelates is the intrinsic relaxation rate of Gd chelates. It is found that T1, T2, and 1/ Gd-chelates decay exponentially as the concentration (or magnetic susceptibility) of Gd chelates increases. The Gd chelates cause a diffusive motion of nuclear spins and hence enhance the relaxation rates. Enhanced image contrast has been demonstrated in a water phantom with Gd chelates in microtesla magnetic fields.
原文 | 英語 |
---|---|
文章編號 | 093904 |
期刊 | Journal of Applied Physics |
卷 | 108 |
發行號 | 9 |
DOIs | |
出版狀態 | 已發佈 - 2010 11月 1 |
ASJC Scopus subject areas
- 一般物理與天文學