Region-of-Interest Detection Based on Graph Convolutional Network and H.266/VVC Encoded Video

Ivane Delos Santos Chen*, Chih Ming Lien, Mei Juan Chen, Chia Hung Yeh, Yuan Hong Lin

*此作品的通信作者

研究成果: 書貢獻/報告類型會議論文篇章

摘要

This paper proposes a novel region-of-interest (ROI) detection method that utilizes a graph convolutional network (GCN) and information from H.266/Versatile Video Coding (VVC) encoded video. The GCN-based model takes various features, including the geometric features, coding mode, motion information, and quantization parameter of the coding unit (CU), as input and produces an output that indicates whether the CU belongs to the ROI. By combining the GCN-based model with the encoded video, the proposed approach significantly reduces the computation time, with an average time saving of 60.88% compared to that of YOLOv7. This paper provides a fast ROI detection method and facilitates post-processing tasks such as the quality enhancement of ROIs for H.266/VVC video.

原文英語
主出版物標題2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023 - Proceedings
發行者Institute of Electrical and Electronics Engineers Inc.
頁面631-632
頁數2
ISBN(電子)9798350324174
DOIs
出版狀態已發佈 - 2023
事件2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023 - Pingtung, 臺灣
持續時間: 2023 7月 172023 7月 19

出版系列

名字2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023 - Proceedings

會議

會議2023 International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2023
國家/地區臺灣
城市Pingtung
期間2023/07/172023/07/19

ASJC Scopus subject areas

  • 人工智慧
  • 人機介面
  • 資訊系統
  • 資訊系統與管理
  • 電氣與電子工程
  • 媒體技術
  • 儀器

指紋

深入研究「Region-of-Interest Detection Based on Graph Convolutional Network and H.266/VVC Encoded Video」主題。共同形成了獨特的指紋。

引用此