Reactivity of C-C scission on Ni-based core/shell bimetallic surfaces investigated with quantum-chemical calculations

Yu Chieh Lin, Jia Jen Ho*

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

1 引文 斯高帕斯(Scopus)

摘要

With quantum-chemical calculations, we investigated the cleavage of the C-C bond in molecules of type R-G, with R = CH3 and G = CO, CN, on the (111) surface of pure Ni and core/shell Cu/Ni and Pt/Ni surfaces. We chose here the three most typical and commonly encountered functional groups to investigate the scission of the catalytic C-C bond on these surfaces. To molecules of two kinds, CH3CO and CH3CN, we added CH3CH 2 as a reference similar to an alkane itself, to perform the scission of the C-C bond on the specified metal surfaces. All three molecules exhibit the greatest adsorption energies on the core/shell Pt/Ni surface, according to the order Pt/Ni > Cu/Ni > Ni. The order of adsorption energy is generally CH3CO > CH3CH2 > CH3CN on all surfaces, but CH3CN adsorbed more strongly than CH3CH 2 on the Pt/Ni surface. CH3CO has the least barrier on all surfaces; the order of its activation energy is Pt/Ni > Ni > Cu/Ni, whereas the order of activation energy for the other two molecules is Ni > Cu/Ni > Pt/Ni, with CH3CN smaller than CH3CH 2. The barriers for cleavage of the C-C bond of CH3CO, CH3CN, and CH3CH2 on the (most active) core/shell Pt/Ni surface are 1.30, 1.47, and 1.84 eV, respectively. The local density of states (LDOS) is projected on the top layer of the pure metal Ni, Cu, and Pt, and the core/shell Cu/Ni and Pt/Ni to rationalize the calculated outcomes.

原文英語
頁(從 - 到)19231-19238
頁數8
期刊Journal of Physical Chemistry C
115
發行號39
DOIs
出版狀態已發佈 - 2011 十月 6

ASJC Scopus subject areas

  • 電子、光磁材料
  • 能源(全部)
  • 物理與理論化學
  • 表面、塗料和薄膜

指紋

深入研究「Reactivity of C-C scission on Ni-based core/shell bimetallic surfaces investigated with quantum-chemical calculations」主題。共同形成了獨特的指紋。

引用此