Ramification filtrations of certain abelian Lie extensions of local fields

Liang Chung Hsia, Hua Chieh Li*

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

4 引文 斯高帕斯(Scopus)

摘要

Let G ⊂ xFq [x] (q is a power of the prime p) be a subset of formal power series over a finite field such that it forms a compact abelian p-adic Lie group of dimension d ≥ 1. We establish a necessary and sufficient condition for the APF extension of local field corresponding to (Fq(x), G) under the field of norms functor to be an extension of p-adic fields. We then apply this result to study invertible power series over a ring of p-adic integers which commute with a fixed noninvertible power series under composition.

原文英語
頁(從 - 到)135-153
頁數19
期刊Journal of Number Theory
168
DOIs
出版狀態已發佈 - 2016 11月 1

ASJC Scopus subject areas

  • 代數與數理論

指紋

深入研究「Ramification filtrations of certain abelian Lie extensions of local fields」主題。共同形成了獨特的指紋。

引用此