TY - JOUR
T1 - Rényi entropy at large energy density in 2D CFT
AU - Guo, Wu zhong
AU - Lin, Feng Li
AU - Zhang, Jiaju
N1 - Publisher Copyright:
© 2019, The Author(s).
PY - 2019/8/1
Y1 - 2019/8/1
N2 - We investigate the Rényi entropy and entanglement entropy of an interval with an arbitrary length in the canonical ensemble, microcanonical ensemble and primary excited states at large energy density in the thermodynamic limit of a two-dimensional large central charge c conformal field theory. As a generalization of the recent work [17], the main purpose of the paper is to see whether one can distinguish these various large energy density states by the Rényi entropies of an interval at different size scales, namely, short, medium and long. Collecting earlier results and performing new calculations in order to compare with and fill gaps in the literature, we give a more complete and detailed analysis of the problem. Especially, we find some corrections to the recent results for the holographic Rényi entropy of a medium size interval, which enlarge the validity region of the results. Based on the Rényi entropies of the three interval scales, we find that Rényi entropy cannot distinguish the canonical and microcanonical ensemble states for a short interval, but can do the job for both medium and long intervals. At the leading order of large c the entanglement entropy cannot distinguish the canonical and microcanonical ensemble states for all interval lengths, but the difference of entanglement entropy for a long interval between the two states would appear with 1/c corrections. We also discuss Rényi entropy and entanglement entropy differences between the thermal states and primary excited state. Overall, our work provide an up-to-date picture of distinguishing different thermal or primary states at various length scales of the subsystem.
AB - We investigate the Rényi entropy and entanglement entropy of an interval with an arbitrary length in the canonical ensemble, microcanonical ensemble and primary excited states at large energy density in the thermodynamic limit of a two-dimensional large central charge c conformal field theory. As a generalization of the recent work [17], the main purpose of the paper is to see whether one can distinguish these various large energy density states by the Rényi entropies of an interval at different size scales, namely, short, medium and long. Collecting earlier results and performing new calculations in order to compare with and fill gaps in the literature, we give a more complete and detailed analysis of the problem. Especially, we find some corrections to the recent results for the holographic Rényi entropy of a medium size interval, which enlarge the validity region of the results. Based on the Rényi entropies of the three interval scales, we find that Rényi entropy cannot distinguish the canonical and microcanonical ensemble states for a short interval, but can do the job for both medium and long intervals. At the leading order of large c the entanglement entropy cannot distinguish the canonical and microcanonical ensemble states for all interval lengths, but the difference of entanglement entropy for a long interval between the two states would appear with 1/c corrections. We also discuss Rényi entropy and entanglement entropy differences between the thermal states and primary excited state. Overall, our work provide an up-to-date picture of distinguishing different thermal or primary states at various length scales of the subsystem.
KW - AdS-CFT Correspondence
KW - Conformal Field Theory
KW - Field Theories in Lower Dimensions
UR - http://www.scopus.com/inward/record.url?scp=85070069012&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85070069012&partnerID=8YFLogxK
U2 - 10.1007/JHEP08(2019)010
DO - 10.1007/JHEP08(2019)010
M3 - Article
AN - SCOPUS:85070069012
SN - 1126-6708
VL - 2019
JO - Journal of High Energy Physics
JF - Journal of High Energy Physics
IS - 8
M1 - 10
ER -