Pyrite alteration and neoformed magnetic minerals in the fault zone of the Chi-Chi earthquake (Mw 7.6, 1999): Evidence for frictional heating and co-seismic fluids

Yu Min Chou*, Sheng Rong Song, Charles Aubourg, Yen Fang Song, Anne Marie Boullier, Teh Quei Lee, Mark Evans, En Chao Yeh, Yi Ming Chen

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

40 引文 斯高帕斯(Scopus)

摘要

During an earthquake, physical and chemical transformations lead to alteration and formation of minerals in the gouge layer. Altered and neoformed minerals can be used as tracers of some earthquake processes. In this study, we investigate pyrite and magnetic minerals within the host Chinshui siltstone and the 16-cm-thick gouge. This gouge hosts the principal slip zone of Chi-Chi earthquake (Mw 7.6, 1999). In the Chinshui siltstone, pyrite framboids of various sizes and euhedral pyrite are observed. The magnetic mineral assemblage comprises stoichiometric magnetite, greigite, and fine-grained pyrrhotite. The pyrite content is generally reduced in the gouge compared to the wall rock. The magnetic mineral assemblage in the gouge consists of goethite, pyrrhotite, and partially oxidized magnetite. The pyrrhotite, goethite and some magnetite are neoformed. Pyrrhotite likely formed from high temperature decomposition of pyrite (>500C) generated during co-seismic slip of repeated earthquakes. Goethite is inferred to have formed from hot aqueous co-seismic fluid (>350C) in association with the 1999 Chi-Chi event. Elevated fluid temperatures can also explain the partial alteration of magnetite and the retrograde alteration of some pyrrhotite to pyrite. We suggest that characterization of neoformed magnetic minerals can provide important information for studying earthquake slip zones in sediment-derived fault gouge.

原文英語
文章編號Q08002
期刊Geochemistry, Geophysics, Geosystems
13
發行號8
DOIs
出版狀態已發佈 - 2012 8月 1

ASJC Scopus subject areas

  • 地球物理
  • 地球化學與岩石學

指紋

深入研究「Pyrite alteration and neoformed magnetic minerals in the fault zone of the Chi-Chi earthquake (Mw 7.6, 1999): Evidence for frictional heating and co-seismic fluids」主題。共同形成了獨特的指紋。

引用此