Promising Area Exploration Based on Hybrid Niching: A Metaheuristic Search Framework for Multimodal Optimization

Jing Ting Huang, Tsung Che Chiang

研究成果: 書貢獻/報告類型會議論文篇章

1 引文 斯高帕斯(Scopus)

摘要

Multimodal optimization aims to find multiple optimal or near-optimal solutions in solving a single-objective optimization problem. In this paper we propose a metaheuristic framework, which utilizes several niching methods including speciation, crowding, and clearing to keep population diversity and search multiple areas in the solution space in parallel. It also uses an archive to store inferior solutions to refresh the population to explore promising areas. The performance of the proposed framework is verified by comparing it with four existing algorithms using the CEC2013 benchmark. The results confirm the positive effects of the proposed ideas and show that our framework provides competitive search ability.

原文英語
主出版物標題2023 IEEE International Conference on Industrial Engineering and Engineering Management, IEEM 2023
發行者Institute of Electrical and Electronics Engineers Inc.
頁面712-716
頁數5
ISBN(電子)9798350323153
DOIs
出版狀態已發佈 - 2023
事件2023 IEEE International Conference on Industrial Engineering and Engineering Management, IEEM 2023 - Singapore, 新加坡
持續時間: 2023 12月 182023 12月 21

出版系列

名字2023 IEEE International Conference on Industrial Engineering and Engineering Management, IEEM 2023

會議

會議2023 IEEE International Conference on Industrial Engineering and Engineering Management, IEEM 2023
國家/地區新加坡
城市Singapore
期間2023/12/182023/12/21

ASJC Scopus subject areas

  • 人工智慧
  • 決策科學(雜項)
  • 統計、概率和不確定性
  • 工業與製造工程
  • 建模與模擬
  • 策略與管理

指紋

深入研究「Promising Area Exploration Based on Hybrid Niching: A Metaheuristic Search Framework for Multimodal Optimization」主題。共同形成了獨特的指紋。

引用此