摘要
We demonstrate control of magnetic domain structures in continuous FePd thin films by patterning their surfaces with plasma treatment. The Fe-oxide layer formed on the surface upon ambient exposure of the FePd alloy thin film grown on an Al2O3(0001) substrate was patterned into microstructures by e-beam lithography followed by O2- or Ar-plasma treatment. Microscopic pinning of magnetic domain walls in the thin films is then observed by magneto-optic Kerr effect microscopy, with the magnetic field needed to reverse the magnetization of the plasma-treated areas being larger than that for the untreated areas. An intriguing competition between the uniaxial anisotropy and the exchange bias is also observed in the system. This study demonstrates that patterning of the film surface with plasma treatment can be an easy and efficient method for sophisticated engineering of magnetic structures in thin films, and therefore has potential application in developing future data-storage and spintronic devices.
原文 | 英語 |
---|---|
文章編號 | 146831 |
期刊 | Applied Surface Science |
卷 | 527 |
DOIs | |
出版狀態 | 已發佈 - 2020 10月 15 |
ASJC Scopus subject areas
- 一般化學
- 凝聚態物理學
- 一般物理與天文學
- 表面和介面
- 表面、塗料和薄膜