摘要
High-performance piezoelectricity in monolayer semiconducting transition metal dichalcogenides is highly desirable for the development of nanosensors, piezotronics and photo-piezotransistors. Here we report the experimental study of the theoretically predicted piezoelectric effect in triangle monolayer MoS 2 devices under isotropic mechanical deformation. The experimental observation indicates that the conductivity of MoS 2 devices can be actively modulated by the piezoelectric charge polarization-induced built-in electric field under strain variation. These polarization charges alter the Schottky barrier height on both contacts, resulting in a barrier height increase with increasing compressive strain and decrease with increasing tensile strain. The underlying mechanism of strain-induced in-plane charge polarization is proposed and discussed using energy band diagrams. In addition, a new type of MoS 2 strain/force sensor built using a monolayer MoS 2 triangle is also demonstrated. Our results provide evidence for strain-gating monolayer MoS 2 piezotronics, a promising avenue for achieving augmented functionalities in next-generation electronic and mechanical-electronic nanodevices.
原文 | 英語 |
---|---|
文章編號 | 7430 |
期刊 | Nature Communications |
卷 | 6 |
DOIs | |
出版狀態 | 已發佈 - 2015 6月 25 |
對外發佈 | 是 |
ASJC Scopus subject areas
- 一般化學
- 一般生物化學,遺傳學和分子生物學
- 一般物理與天文學