TY - JOUR
T1 - Phylogeography of the Alcippe morrisonia (Aves: Timaliidae)
T2 - Long population history beyond late Pleistocene glaciations
AU - Song, Gang
AU - Qu, Yanhua
AU - Yin, Zuohua
AU - Li, Shouhsien
AU - Liu, Naifa
AU - Lei, Fumin
N1 - Funding Information:
We are grateful to Professor LL Severinghaus for kindly providing several Taiwan samples of A. morrisonia. We also appreciate RC Lin for her patient help in part of the sequencing work for the Taiwan samples, and RY Zhang for her kindly help in drawing figures in the text. We offer our sincere thanks to Professor R Nielsen of the University of California Berkeley for his help with MDIV analysis. We also acknowledge Professor F Zhou in Guangxi University for his advice about generation time choice based on details of reproductive ecology of A. morrisonia, and two anonymous reviewers for their valuable comments on the manuscript. The research was supported by NSFC (30870270), the CAS Innovation Program (KSCX2-YW-N-063) and China MOST Program (2006FY110500) to FM Lei, National Science Fund for Fostering Talents in Basic Research (Special subjects in animal taxonomy, NSFC-J0630964/J0109) to G Song, and NSFC 30770303, KSCX2-YW-Z-012 to YH Qu.
PY - 2009
Y1 - 2009
N2 - Background. The role of Pleistocene glacial oscillations in current biodiversity and distribution patterns varies with latitude, physical topology and population life history and has long been a topic of discussion. However, there had been little phylogeographical research in south China, where the geophysical complexity is associated with great biodiversity. A bird endemic in Southeast Asia, the Grey-cheeked Fulvetta, Alcippe morrisonia, has been reported to show deep genetic divergences among its seven subspecies. In the present study, we investigated the phylogeography of A. morrisonia to explore its population structure and evolutionary history, in order to gain insight into the effect of geological events on the speciation and diversity of birds endemic in south China. Results. Mitochondrial genes cytochrome b (Cytb) and cytochrome c oxidase I (COI) were represented by 1236 nucleotide sites from 151 individuals from 29 localities. Phylogenetic analysis showed seven monophyletic clades congruent with the geographically separated groups, which were identified as major sources of molecular variance (90.92%) by AMOVA. TCS analysis revealed four disconnected networks, and that no haplotype was shared among the geographical groups. The common ancestor of these populations was dated to 11.6 Mya and several divergence events were estimated along the population evolutionary history. Isolation by distance was inferred by NCPA to be responsible for the current intra-population genetic pattern and gene flow among geographical groups was interrupted. A late Pleistocene demographic expansion was detected in the eastern geographical groups, while the expansion time (0.20.4 Mya) was earlier than the Last Glacial Maximum. Conclusion. It is proposed that the complicated topology preserves high genetic diversity and ancient lineages for geographical groups of A. morrisonia in China mainland and its two major islands, and restricts gene exchange during climate oscillations. Isolation by distance seems to be an important factor of genetic structure formation within geographical populations. Although glacial influence to population fluctuation was observed in late Pleistocene, it seems that populations in eastern China were more susceptible to climate change, and all geographical groups were growing stably through the Last Glacial Maximum. Coalescence analysis suggested that the ancestor of A. morrisonia might be traced back to the late Miocene, and the current phylogeographical structure of A. morrisonia is more likely to be attributable to a series geological events than to Pleistocene glacial cycles.
AB - Background. The role of Pleistocene glacial oscillations in current biodiversity and distribution patterns varies with latitude, physical topology and population life history and has long been a topic of discussion. However, there had been little phylogeographical research in south China, where the geophysical complexity is associated with great biodiversity. A bird endemic in Southeast Asia, the Grey-cheeked Fulvetta, Alcippe morrisonia, has been reported to show deep genetic divergences among its seven subspecies. In the present study, we investigated the phylogeography of A. morrisonia to explore its population structure and evolutionary history, in order to gain insight into the effect of geological events on the speciation and diversity of birds endemic in south China. Results. Mitochondrial genes cytochrome b (Cytb) and cytochrome c oxidase I (COI) were represented by 1236 nucleotide sites from 151 individuals from 29 localities. Phylogenetic analysis showed seven monophyletic clades congruent with the geographically separated groups, which were identified as major sources of molecular variance (90.92%) by AMOVA. TCS analysis revealed four disconnected networks, and that no haplotype was shared among the geographical groups. The common ancestor of these populations was dated to 11.6 Mya and several divergence events were estimated along the population evolutionary history. Isolation by distance was inferred by NCPA to be responsible for the current intra-population genetic pattern and gene flow among geographical groups was interrupted. A late Pleistocene demographic expansion was detected in the eastern geographical groups, while the expansion time (0.20.4 Mya) was earlier than the Last Glacial Maximum. Conclusion. It is proposed that the complicated topology preserves high genetic diversity and ancient lineages for geographical groups of A. morrisonia in China mainland and its two major islands, and restricts gene exchange during climate oscillations. Isolation by distance seems to be an important factor of genetic structure formation within geographical populations. Although glacial influence to population fluctuation was observed in late Pleistocene, it seems that populations in eastern China were more susceptible to climate change, and all geographical groups were growing stably through the Last Glacial Maximum. Coalescence analysis suggested that the ancestor of A. morrisonia might be traced back to the late Miocene, and the current phylogeographical structure of A. morrisonia is more likely to be attributable to a series geological events than to Pleistocene glacial cycles.
UR - http://www.scopus.com/inward/record.url?scp=67651242197&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67651242197&partnerID=8YFLogxK
U2 - 10.1186/1471-2148-9-143
DO - 10.1186/1471-2148-9-143
M3 - Article
C2 - 19558699
AN - SCOPUS:67651242197
SN - 1471-2148
VL - 9
JO - BMC evolutionary biology
JF - BMC evolutionary biology
IS - 1
M1 - 143
ER -