Palindromic quadratization and structure-preserving algorithm for palindromic matrix polynomials of even degree

Tsung-Min Hwang, Wen Wei Lin, Wei Shuo Su

研究成果: 雜誌貢獻文章同行評審

7 引文 斯高帕斯(Scopus)

摘要

In this paper, we propose a palindromic quadratization approach, transforming a palindromic matrix polynomial of even degree to a palindromic quadratic pencil. Based on the (S + S-1)-transform and Patel's algorithm, the structure-preserving algorithm can then be applied to solve the corresponding palindromic quadratic eigenvalue problem. Numerical experiments show that the relative residuals for eigenpairs of palindromic polynomial eigenvalue problems computed by palindromic quadratized eigenvalue problems are better than those via palindromic linearized eigenvalue problems or polyeig in MATLAB.

原文英語
頁(從 - 到)713-735
頁數23
期刊Numerische Mathematik
118
發行號4
DOIs
出版狀態已發佈 - 2011 八月 1

ASJC Scopus subject areas

  • Computational Mathematics
  • Applied Mathematics

指紋 深入研究「Palindromic quadratization and structure-preserving algorithm for palindromic matrix polynomials of even degree」主題。共同形成了獨特的指紋。

引用此