摘要
The T-palindromic quadratic eigenvalue problem (λ2B + λC + A)x = 0, with A,B,C ε Cn×n, CT = C and BT = A, governs the vibration behaviour of trains. Other palindromic eigenvalue problems, quadratic or higher order, arise from applications in surface acoustic wave filters, optimal control of discrete-time systems and crack modelling. Numerical solution of palindromic eigenvalue problems is challenging, with unacceptably low accuracy from the basic linearization approach. In this survey paper, we shall talk about the history of palindromic eigenvalue problems, in terms of their history, applications, numerical solution and generalization. We shall also speculate on some future directions of research.
原文 | 英語 |
---|---|
頁(從 - 到) | 743-779 |
頁數 | 37 |
期刊 | Taiwanese Journal of Mathematics |
卷 | 14 |
發行號 | 3 A |
DOIs | |
出版狀態 | 已發佈 - 2010 六月 |
ASJC Scopus subject areas
- Mathematics(all)