Optimizing Photovoltaic Power Production in Partial Shading Conditions Using Dandelion Optimizer (DO)-Based MPPT Method

Injila Sajid, Ayushi Gautam, Adil Sarwar*, Mohd Tariq, Hwa Dong Liu*, Shafiq Ahmad, Chang Hua Lin, Abdelaty Edrees Sayed

*此作品的通信作者

研究成果: 雜誌貢獻期刊論文同行評審

11 引文 斯高帕斯(Scopus)

摘要

This research proposes the dandelion optimizer (DO), a bioinspired stochastic optimization technique, as a solution for achieving maximum power point tracking (MPPT) in photovoltaic (PV) arrays under partial shading (PS) conditions. In such scenarios, the overall power output of the PV array is adversely affected, with shaded cells generating less power and consuming power themselves, resulting in reduced efficiency and local hotspots. While bypass diodes can be employed to mitigate these effects by redirecting current around shaded cells, they may cause multiple peaks, making MPPT challenging. Therefore, metaheuristic algorithms are suggested to effectively optimize power output and handle multiple peaks. The DO algorithm draws inspiration from the long-distance movement of a dandelion seed, which relies on the force of the wind. By utilizing this bioinspired approach, the DO algorithm can successfully capture the maximum power point (MPP) under different partial shading scenarios, where traditional MPPT algorithms often struggle. An essential contribution of this research lies in the examination of the performance of the proposed algorithm through simulation and real-time hardware-in-the-loop (HIL) results. Comparing the DO algorithm with the state-of-the-art algorithms, including particle swarm optimization (PSO) and cuckoo search (CS), the DO algorithm outperforms them in terms of power tracking efficiency, tracking duration, and the maximum power tracked. Based on the real-time HIL results, the DO algorithm achieves the highest average efficiency at 99.60%, surpassing CS at 96.46% and PSO at 94.74%. These findings demonstrate the effectiveness of the DO algorithm in enhancing the performance of MPPT in PV arrays, particularly in challenging partial shading conditions.

原文英語
文章編號2493
期刊Processes
11
發行號8
DOIs
出版狀態已發佈 - 2023 8月

ASJC Scopus subject areas

  • 生物工程
  • 化學工程(雜項)
  • 製程化學與技術

指紋

深入研究「Optimizing Photovoltaic Power Production in Partial Shading Conditions Using Dandelion Optimizer (DO)-Based MPPT Method」主題。共同形成了獨特的指紋。

引用此